Skip to main content
Log in

Averaged Momentum Equation for Flow Through a Nonhomogenenous Porous Structure

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper addresses the derivation of the macroscopic momentum equation for flow through a nonhomogeneous porous matrix, with reference to dendritic structures characterized by evolving heterogeneities. A weighted averaging procedure, applied to the local Stokes' equations, shows that the heterogeneous form of the Darcy's law explicitly involves the porosity gradients. These extra terms have to be considered under particular conditions, depending on the rate of geometry variations. In these cases, the local closure problem becomes extremely complex and the full solution is still out of reach. Using a simplified two-phase system with continuous porosity variations, we numerically analyze the limits where the usual closure problem can be retained to estimate the permeability of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrère, J.: 1990, Modélisation des ecoulements de Stokes et Navier- Stokes en milieu poreux, PhD thesis, Université de Bordeaux.

  • Barrère, J., Gipouloux, O. and Whitaker, S.: 1992, On the closure problem for Darcy's law, Transport in Porous Media 7, 209–222.

    Google Scholar 

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media, Elsevier, New York.

    Google Scholar 

  • Beckermann, C.: 1987, Melting and solidification of binary mixtures with double-diffusive convection in the melt, PhD thesis, Purdue University, West Lafayette.

    Google Scholar 

  • Beckermann, C and Viskanta, R.: 1988, Double-diffusive convection during dendritic solidification of a Binary mixture, Phys. Chem. Hydrodynamics 10, 195–213.

    Google Scholar 

  • Bennon, W. D. and Incropera, F. P.: 1987, A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems I. Model formulation, Int. J. Heat Mass Transfer 30(10), 2161–2170.

    Google Scholar 

  • Bensoussan, J., Lions, L. and Papanicolao, G.: 1987, Asymptotic Analysis for Periodic Structure, North-Holland, Amsterdam.

    Google Scholar 

  • Carbonell, R. G. and Whitaker, S.: 1984, Heat and Mass Transfer in Porous Media, Martinus Nijhoff, Dordrecht, pp. 121–198.

    Google Scholar 

  • Christenson, M. S., Bennon, W. D. and Incropera, F. P.: 1989, Solidification of an aqueous ammonium chloride solution in a sectangular cavity - II. Comparison of predicted and mesured results, Int. J. Heat Mass Transfer 32, 69–79.

    Google Scholar 

  • Cushman, J. H.: 1983, Multiphase transport equations: I General equation for macroscopic statistical, local, space-time, Transport Theory and Statistical Physic 12(1), 35–71.

    Google Scholar 

  • Cushman, H. H. and Ginn, T. R.: 1983 Non-local dispersion in media with continuous evolving scales of heterogeneity, Transport in Porous Media 13, 123–138.

    Google Scholar 

  • Ding, A. and Candela, D.: 1996, Probing nonlocal tracer dispersion in flows through random porous media, Phys. Rev. E 54(1), 656–660.

    Google Scholar 

  • Firdaous, M. and Guermond, J.: 1995, Sur l'homogénéisation des équations de Navier- Stokes à faible nombre de Reynolds, C. R. Acad. Sci. Paris Série I 320, 245–251.

    Google Scholar 

  • Flemings, M.: 1974, Solidification Processing, McGraw-Hill, New York

    Google Scholar 

  • Ganesan, S. and Poirier, D. R.: 1990, Conservation of mass and momentum for the flow of interdendritic liquid during solidification, Met. Trans. 21B, 173–181.

    Google Scholar 

  • Godrèche, C.: 1991, Solids Far from Equilibrium, Cambridge University Press.

  • Gray, W. G.: 1975, A derivation of the equations for multi-phase transport, Chem. Eng. Sci. 3, 229–233.

    Google Scholar 

  • Heinrich, J. C., Felicelli, S., Nandapurkar, P. and Poirier, D. R.: 1989, Thermosolutal convection during dendritic solidification of alloys: Part II. Nonlinear convection, Met. Trans. 20B, 883–891.

    Google Scholar 

  • Hills, R. N., Lopper, D. E. and Roberts, P. H.: 1983, A thermodymically consistent model of a mushy zone, Q. J. Mech. Appl. Math. 36, 505–539.

    Google Scholar 

  • Howes, F. W. and Whitaker, S.: 1985, The spatial averaging theorem revisited, Chem. Eng. Sci. 40, 1387–1392.

    Google Scholar 

  • Huppert, H. E.: 1990, The fluid mechanics of solidification, J. Fluid Mech. 212, 209–240.

    Google Scholar 

  • Koch, D. L. and Brady, J. L.: 1987, A non-local description of advection-diffusion with application to dispersion in porous media, J. Fluid Mech. 180, 387–403.

    Google Scholar 

  • Marle, C. M.: 1967, Ecoulements monophasiques en milieu poreux, Rev. Inst. Francais Pétrole, pp. 1471–1509.

  • Marle, C.M.: 1982, On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media, Int. J. Engng. Sci. 20, 643–662.

    Google Scholar 

  • Matheron, G.: 1982, Les variables régionalisées et leur estimation: une aplication de la théorie des fonctions aléatoires aux sciences de la nature, Masson, Paris.

    Google Scholar 

  • Mei, C. C. and Auriault, J. L.: 1991, The effect of weak inertia on flow through a porous media, J. Fluid Mech. 222, 647–663.

    Google Scholar 

  • Murakami, K., Shiraishi, A. and Okamoto, T.: 1983, Interdendritic fluid flow normal to primary dendrite-arms in cubic alloys, Acta Metal. 31, 1417–1424.

    Google Scholar 

  • Murakami, K., Shiraishi, A. and Okamoto, A. 1984, Fluid flow in interdendritic space in cubic alloys, Acta Metal. 32, 1423–1428.

    Google Scholar 

  • Nandapurkar, P., Poirier, D. R. and Heinrich, J. C.: 1991, Momentum equation for dendritic solidification, Numerical Heat Transfer 19A, 297–311.

    Google Scholar 

  • Nasser-Rafi, R., Deshmukh, R. and Poirier, D. R.: 1985, Flow of interdendritic liquid and permeability in Pb-20 Wt Pct Sn alloys, Met. Trans. 16A, 2263–2271.

    Google Scholar 

  • Ni, J. and Beckermann, C. 1991, A volume-averaged two-phase model for transport phenomena during solidification, Met. Trans. 22B, 349–361.

    Google Scholar 

  • Poirier, D. R.: 1987, Permeability for flow of interdendritic liquid in columnar-dendritic alloys, Met. Trans. 18B, 245–255.

    Google Scholar 

  • Prescott, P. J., Incropera, F. P. and Gaskell, D. R.: 1994, Convective transport phenomena and macrosegregation during solidification of binary metal alloy: II - Experiments and comparisons with numerical predictions, J. Heat Transfer 116, 742–749.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1993, Transport in ordered and disordered porous media: Volume averaged equations, closure problems and comparison with experiment, Chem. Eng. Sci. 48, 2537–2564.

    Google Scholar 

  • Quintard, M. and Whitaker, S., 1994a, Transport in ordered and disordered porous media I: The cellular average and the use of weighting functions, Transport in Porous Media 14, 163–177.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1994b, Transport in ordered and disordered porous media II: Generalized volume averaging, Transport in Porous Media 14, 179–206.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1994c, Transport in ordered and disordered porous media III: Closure and comparison between theory and experiment, Transport in Porous Media 15, 31–49.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1994d, Transport in ordered and disordered porous media IV: Computer generated porous media for three-dimensional systems, Transport in Porous Media 15, 51–70.

    Google Scholar 

  • Quintard, M. and Whitaker, S.: 1994e Transport in ordered and disordered porous Media V: Geometrical results for two-dimensional systems, Transport in Porous Media 15, 183–196.

    Google Scholar 

  • Sanchez-Palencia, E. 1980, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Phys. 127, Springer, New York.

    Google Scholar 

  • Schwartz, L., 1987, Théorie des distributions, Hermann, Paris.

    Google Scholar 

  • Sinha, S.K., Sundararajan, T. and Garg, V. K.: 1992, Avariable property analysis of alloy solidification using the anisotropic porous medium approach, Int. J. Heat and Mass Transfer 35, 2865–2877.

    Google Scholar 

  • Slattery, J. C., 1967, Flow of viscoelastic fluids through porous media, AIChE J. 13, 1066–1071.

    Google Scholar 

  • Sternberg, S. P. K., Cushman, J. H. and Greenkorn, R. A., 1996, Laboratory observation of nonlocal dispersion, Transport in Porous Media 25(2), 35–151.

    Google Scholar 

  • Szekely, J. and Jassal, A. S.: 1978, An experimental and analytical study of the solidification of a binary dendritic system, Met. Trans. 9B, 389–398.

    Google Scholar 

  • Voller, V. R. and Prakash, C.: 1987, A fixed grid numerical modelling methodology for connectiondiffusion mushy region phase-change problems, Int. J. Heat Mass Transfer 30(8), 1709–1719.

    Google Scholar 

  • Whitaker, S.: 1969, Advances in theory of fluid motion in porous media, Ind. Eng. Chem. 12, 12–28.

    Google Scholar 

  • Whitaker, S.: 1986, Flow in porous media I: A theoretical derivation of Darcy's law, Transport in Porous Media, 1, 3–35.

    Google Scholar 

  • Whitaker, S.: 1996, The Forchheimer equation: A theoretical development, Transport in Porous Media 25, 27–61.

    Google Scholar 

  • Wodie, J. C. and Levy, T.: 1991, Correction non linéaire de la loi de Darcy, C.R. Acad. Sci. Paris Serie II 312, 157–161.

    Google Scholar 

  • Worster, M. G.: 1991, Natural convection in a mushy layer, J. Fluid Mech. 224, 335–359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyeau, B., Benihaddadene, T., Gobin, D. et al. Averaged Momentum Equation for Flow Through a Nonhomogenenous Porous Structure. Transport in Porous Media 28, 19–50 (1997). https://doi.org/10.1023/A:1006578602112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006578602112

Navigation