Abstract
The classical Jung theorem gives an optimal upper estimate for the radius of a bounded subset of R n in terms of its diameter and the dimension. In this note we present an analogue of this result for metric spaces of curvature bounded above in the sense of Alexandrov.
This is a preview of subscription content,
to check access.References
Alexandrov, A. D.: Über eine Verallgemeinerung der Riemannschen Geometrie, Schriftenreihe des Forschungsinst. für Math. Berlin 1 (1957), 33–84.
Alexandrov, A. D., Berestovskij, V. N. and Nikolaev, I. G.: Generalized Riemannian spaces, Russian Math. Surveys 41 (1986), 1–54.
Ballmann, W.: Lectures on Spaces of Nonpositive Curvature, DMV Seminar Band, No. 25, Birkhäuser, Basel, 1995.
Ballmann, W., Gromov, M. and Schroeder, V.: Manifolds of Nonpositive Curvature, Birkhäuser, Basel, 1985.
Berestovskij, V. N. and Nikolaev, I. G.: Multidimensional generalized Riemannian spaces, in Reshetnyak, Yu. G. (ed.), Geometry IV, Encyclopaedia of Mathematical Sciences, Vol. 70, Springer-Verlag, Berlin, 1993, pp. 165–243.
Bridson, M. R. and Haefliger, A.: Metric spaces of non-positive curvature, in preparation.
Buyalo, S. V.: Lectures on spaces of curvature bounded above, Notes available from the author, 1995.
Buyalo, S. V.: Catching geodesies in Hadamard spaces, POMI preprint 1996.
Danzer, L, Grünbaum, B. and Klee, V.: Helly's theorem and its relatives, in Klee, V. (ed.), Proceedings of Symposia in Pure Mathematics, Vol. 7, Convexity, Amer. Math. Soc., Providence, RI, 1963, pp. 101–180.
Dekster, B. V.: The Jung theorem for the spherical and the hyperbolic spaces, Acta Math. Sci. Hungar. 67 (1995), 315–331.
Dekster, B. V.: The Jung theorem in metric spaces of curvature bounded above, Proc. Amer. Math. Soc., to appear.
Dekster, B. V. and Dekster, M.: Two versions of the Jung theorem in metric spaces of curvature bounded above, Arch. Math. 66 (1996), 502–510.
Federer, H.: Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
Jung, H. W. E.: Über die kleinste Kugel, die eine räumliche Figur einschliesst, J. reine angew. Math. 123 (1901), 241–257.
Katz, M.: The filling radius of two-point homogeneous spaces, J. Differ. Geom. 18 (1983), 505–511.
Katz, M.: Jung's theorem in complex projective geometry, Quart. J. Math. Oxford 36 (1985), 451–466.
Katz, M.: The rational filling radius of complex projective space, Topology Appl. 42 (1991), 201–215.
Lang, U. and Schroeder, V.: Kirszbraun's theorem and metric spaces of bounded curvature, preprint 1996.
Nikolaev, I. N.: The tangent cone of an Aleksandrov space of curvature ≤ K, Manuscripta math. 86 (1995), 137–147.
Yang, L. and Zhang, J. Z.: Spanning-radius of a compact set of hyperbolic space, Scientia Sinica, Ser. A 26 (1983), 148–158.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lang, U., Schroeder, V. Jung's Theorem for Alexandrov Spaces of Curvature Bounded Above. Annals of Global Analysis and Geometry 15, 263–275 (1997). https://doi.org/10.1023/A:1006574402955
Issue Date:
DOI: https://doi.org/10.1023/A:1006574402955