Skip to main content

From Panspermia to Bioastronomy, the Evolution of the Hypothesis of Universal Life

Abstract

During the 19th and early 20th centuries, ideas related to the possible origin in space of bioorganic molecules, or seeds, or even germs and organisms (and how they reached the Earth) included the Panspermia theory. Based on the idea of the eternity of life proposed by eminent physicists – such as Arrhenius and Kelvin – ‘Panspermia’ is mainly divided into two branches: lithopanspermia (transport of germs inside stones traveling in space) and radiopanspermia (transport of spores by radiative pressure of stellar light). We point out some arguments to help to understand whether ‘Panspermia’ could exist nowadays as the same theory defined one century ago. And we wonder about the kind of evolution ‘Panspermia’ could have undergone during only a few decades. This possible evolution of the ‘Panspermia’ concept takes place in the framework of the emergence of a new field, Bioastronomy. We present how this discipline has emerged during a few decades and how it has evolved. We consider its relationship with the progression of other scientific fields, and finally we examine how it is now included in different projects of space agencies. Bioastronomy researches having become more and more robust during the last few years, we emphasize several questions about new ideas and their consequences for the current hypothesis of ‘Panspermia’ and of universal life.

This is a preview of subscription content, access via your institution.

References

  1. Almar, I.: 1988, in Marx, G. (ed.), Bioastronomy - The Next Steps, Kluwer Academic Publishers, p. XV.

  2. Angel, R. and Woolf, N.: 1997, Astrophys. J. 475, 373.

    Google Scholar 

  3. Arrhenius, S.: 1908, World in the Making, Harper and Row, New York.

    Google Scholar 

  4. Arzoumian, Z., Joshi, K., Rasio, F. and Thorsett, S.: 1996, in Bailes, Johnston and Walker (eds.), Pulsars: Problems and Progress, IAU Colloqium 160, Astro. Soc. of the Pacific, Conf. Series, p. 525.

  5. Awramik, S. M., Schopf, J. W. and Walter, M. R.: 1983, Precambrian Res. 20, 357.

    Google Scholar 

  6. Becquerel, P.: 1910a, Comptes Rendus de l'Académie des Sciences, Paris, 86.

  7. Becquerel, P.: 1910b, La Panspermie Interastrale Devant les Faits, Editions de la Revue Politique et Littéraire (Revue Bleue) et de la Revue Scientifique, Paris.

  8. Bracewell, R. and McPhie, R. H.: 1979, Icarus 38, 136.

    Google Scholar 

  9. Butler, P., Marcy, G, Williams, E., Hauser, H. and Sirts, Ph.: 1997, Astrophys. J. Lett. 474, L115.

    Google Scholar 

  10. Butler, P. and Marcy, G.: 1996, Astrophys. J. Lett. 464, L15.

    Google Scholar 

  11. Chela-Flores, J.: 1996, in Abstracts of the 8th ISSOL Meeting International Conference on the Origin of Life, July 8-13, Orléans, France.

  12. Claus, G. and Nagy, B.: 1961, Nature 192, 594.

    Google Scholar 

  13. Cocconi, G. and Morrison, P.: 1959, Nature 184, 844.

    Google Scholar 

  14. Cochran, W., Hatzes, A., Butler, P. and Marcy, G.: 1997, 28th Meeting of the Division of Planetary Science (American Astronomical Society), B.A.A.S. (in press).

  15. Cooper, H. Jr.: 1976, The Search for Life on Mars, Holt, Rinehart and Winston, New York.

    Google Scholar 

  16. Crick, F. and Orgel, L.: 1973, Icarus 19, 341.

    Google Scholar 

  17. Crick, F.: 1981, Life Itself, Simon and Schuster, New York.

    Google Scholar 

  18. Crowe, M. J.: 1986, The Extraterrestrial Life Debate 1750-1900, The Idea of a Plurality of Worlds from Kant to Lowell, Cambridge University Press, Cambridge.

    Google Scholar 

  19. Davoust, E.: 1991, The Cosmic Water Hole, MIT Press, Cambridge.

    Google Scholar 

  20. Demianski, M. and Proszynski, M.: 1976, Nature 282, 383.

    Google Scholar 

  21. Derrida, J.: 1976, Of Grammatology, John Hopkins University Press, 1967, translated from De la Grammatologie, Editions de Minuit, Paris.

  22. Dick, S. J.: 1996, The Biological Universe, Cambridge University Press, Cambridge.

    Google Scholar 

  23. Dose, K.: 1986, Adv. Space Res. 6(12), 181.

    PubMed  Google Scholar 

  24. Drake, F. D.: 1961, Phys. Today 14, 40.

    Google Scholar 

  25. Garrison, W. M., Morrison, J., Hamilton, G., Benson, A. A. and Calvin, M.: 1951, Science 114, 416.

    PubMed  Google Scholar 

  26. Goldanskii, V., Frank-Kamenetskii, M. D. and Barkalov, I. M.: 1973, Science 182, 1344.

    Google Scholar 

  27. Goldanskii, V.: 1977, Nature 269, 583.

    Google Scholar 

  28. Goldanskii, V.: 1993, European Review 1(2), 137.

    Google Scholar 

  29. Gray, D.: 1997, Nature 385, 795.

    Google Scholar 

  30. Greenberg, M.: 1974, Astrophys. J. 189, L81.

    Google Scholar 

  31. Haldane, J. B. S.: 1929, Ration. Ann. 148, 3.

    Google Scholar 

  32. Heidmann, J.: 1995, Extraterrestrial Intelligence, Cambridge University Press, Cambridge.

    Google Scholar 

  33. Horneck, G., Facius, R., Enge, W., Beaujan, R. and Bartholomä, K.: 1974, Life Sci. Space Res. 12, 75.

    PubMed  Google Scholar 

  34. Horneck, G.: 1993, Origins Life Evol. Biosphere 23, 37.

    Google Scholar 

  35. Horneck, G., Bücker, H. and Reitz, G.: 1994, Adv. Space Res. 14(10), (10)41–(10)45.

    PubMed  Google Scholar 

  36. Horneck, G., Eschweiler, U., Reitz, G., Wehner, J., Willimek, R. and Strauch, K.: 1995, Adv. Space Res. 16(8), (8)105–(8)118.

    PubMed  Google Scholar 

  37. Hoyle, F. and Wickramasinghe, N. C.: 1977, Nature 268, 610.

    Google Scholar 

  38. Hoyle, F. and Wickramasinghe, N. C.: 1979, Diseases from Space, Harper and Row, New York.

    Google Scholar 

  39. Huygens, C.: 1698, Cosmotheoros, the Hague.

  40. Kamminga, H.: 1986, Vistas in Astronomy 26, 67.

    Google Scholar 

  41. Kaplan, I. R, Degens, E. T. and Reuter, J. H.: 1963, Geochim. Cosmochim. Acta 27, 805.

    Google Scholar 

  42. Léger, A., Mariotti, J. M., Menesson, B., Rouan, D. and Schneider, J.: 1996, Icarus 123, 249.

    Google Scholar 

  43. Lovelock, J.: 1975, Proc. Roy. Soc. B189, 167.

    Google Scholar 

  44. Marcy, G. and Butler, P.: 1996, Astrophys. J. Lett. 464, L147.

    Google Scholar 

  45. Maurel, M. C.: 1994, Les Origines de la Vie, Syros, Paris.

  46. Maurel, M. C.: 1995, Microbiologia SEM 11, 199.

    Google Scholar 

  47. Mayor, M. and Queloz, D.: 1995, Nature 378, 355.

    Google Scholar 

  48. McKay, D. S., Gibson, E. K. Jr., ThomasKeprta, K. L., Vali, H., Romanek, Ch. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R. and Zare, R. N.: 1996, Science 273(5277), 924.

    PubMed  Google Scholar 

  49. Miller, S.: 1953, Science 117(3046), 528.

    PubMed  Google Scholar 

  50. Morrison, P.: 1963, in A. G. W. Cameron (ed.), Interstellar Communication, W. A. Benjamin Inc., p. 251.

  51. Noyes, R., Jha, S., Korzennik, S., Krockenberger, M., Nisenson, P., Brown, T., Kennelly, E. and Horner, S.: 1997, Astrophys. J. (to be published).

  52. Oparin, A. I.: 1938, The Origin of Life, Mac Millan, New York.

    Google Scholar 

  53. Owen, T.: 1981, in M. Papagiannis (ed.), Strategies for the Search for Life in the Universe, Reidel, p. 177.

  54. Pan, X., Kulcarni, S., Colavita,M. and Shao, M.: 1997, in M. Rebold (ed.), Proc. of TenerifeWorkshop on ExtraSolar Planets and Brown Dwarfs (in press).

  55. Papagiannis, M. D.: 1984b, IAU Symp. 112.

  56. Pearman, J. P. T.: 1963, in A. G. W. Cameron (ed.), Interstellar Communication, W. A. Benjamin Inc., p. 288.

  57. Raulin, F., Raulin-Cerceau, F. and Schneider, J.: 1997, La Bioastronomie, Que sais-je?, Presses Universitaires de France, Paris (in press).

    Google Scholar 

  58. Regis, E. Jr. (ed.): 1985, Extraterrestrials, Science and Alien Intelligence, Cambridge University Press, Cambridge.

    Google Scholar 

  59. Schneider, J.: 1994, Astr. and Spa. Sci. 212, 321.

    Google Scholar 

  60. Schneider, J.: 1995, in Bitbol and Ruhnau (eds.), Time, Now and Quantum Mechanics, Editions Frontières, Gif sur Yvette, France, p. 131.

  61. Schneider, J.: 1996a, in J. Chela-Flores and F. Raulin (eds.), Chemical Evolution: Physics of the Origin and Evolution of Life, Kluwer Academic Publishers, p. 73.

  62. Schneider, J.: 1996b, Astr. and Spa. Sci. 241, 35.

    Google Scholar 

  63. Van de Kamp, P.: 1945, Publ. Astron. Soc. Pacific 57, 34.

    Google Scholar 

  64. Van de Kamp, P.: 1969, Astron. J. 74(2), 238.

    Google Scholar 

  65. Weber, P. and Greenberg, M. J.: 1985, Nature 316, 403.

    Google Scholar 

  66. Wickramasinghe, N. C.: 1974, Nature 252, 462.

    Google Scholar 

  67. Wolszczan, A.: 1997, in Soderblom (ed.), Meeting Planets Beyond the Solar System and the Next Generation of Space Missions, Baltimore, 16-18 October (in press).

  68. Wright, I. P., Grady, M. M. and Pillinger, C. T.: 1989, Nature 340, 220.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raulin-Cerceau, F., Maurel, MC. & Schneider, J. From Panspermia to Bioastronomy, the Evolution of the Hypothesis of Universal Life. Orig Life Evol Biosph 28, 597–612 (1998). https://doi.org/10.1023/A:1006566518046

Download citation

Keywords

  • Organic Chemistry
  • Geochemistry
  • 20th Century
  • Scientific Field
  • Radiative Pressure