Skip to main content
Log in

Diffusion of Randon in Porous Media Saturated with Gels and Emulsions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The effective diffusion coefficient of radon was determined in polymer/silicate gels and clay suspension used as sealing materials in environmental protection. On the basis of the experimental findings, it was concluded that both materials drastically decrease the convective mass transport in porous media. Simultaneously, the effective diffusion coefficient was reduced significantly. Thus, the radon flux might be decreased by 5 to 6 orders of magnitude in porous systems originally having gas or low water saturation by injection of gel-forming materials or placement of clay suspensions. At high water saturation, however, the diffusion transport of radon can be slightly restricted in consolidated and unconsolidated porous media. The laboratory studies may firmly allow us to conclude that hydrogels and clay suspensions are prospective candidates in an integrated environmental technology to be used for restriction of radon migration in subsurface regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Radiological Protection Board, United Kingdom: 1993, Natural Radiation Map of Western Europe, Information Folder.

  2. Keshian B. and Bone M.: 1985, Publ. Univ. Arizona, p. 145.

  3. McCorkell R. H. and Silver M.: 1987, CIM Bulletin 80, 43.

    Google Scholar 

  4. Fleischer R. L. and Likes R. S.: 1979, Geophysics 44, 1963.

    Google Scholar 

  5. Archibald J. F. and Hackwood H. J.: 1987, CIM Bulletin 80, 39.

    Google Scholar 

  6. Lakatos I. and Bauer K.: 1992, 4th Symp. on Mining Chemistry, Kiev, Proc., p. 85.

  7. Nielson K. K., Rogers V. C. and Gee G. W.: 1984, Soil Sci. Soc. Am. J. 48, 482.

    Google Scholar 

  8. Loureiro C. O., Abriola L. M., Martin J. E. and Sextro R. G.: 1990, Environ. Sci. Technol. 24, 1338.

    Google Scholar 

  9. Tufail M., Mirza S. M., Chughtai M. K., Ahmad N. and Khan H. A.: 1991, Nucl. Tracks Rad. Measurements 19, 427.

    Google Scholar 

  10. Ramola R. C., Singh M., Singh S. and Virk H. S.: 1991, Nucl. Tracks Rad. Measurements 19, 389.

    Google Scholar 

  11. Mrnustik J. and Kominek A.: 1990, J. Environ. Radioactivity 12, 121.

    Google Scholar 

  12. Csige I., Hakl J. and Lakatos I.: 1995, Radiation Measurements 25, 659.

    Google Scholar 

  13. Pirson S. J.: 1958, Oil Reservoir Engineering, McGraw-Hill, New York.

    Google Scholar 

  14. Dullien F. A. L.: 1992, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York.

    Google Scholar 

  15. Lakatos I. and Lakatos-Szabó, J.: 1996, Magyar Kémiai Folyóirat 102, 491.

    Google Scholar 

  16. Jost W.: 1957, Diffusion-Methoden der Messung und Auswertung, D. Steinkopff Verlag, Darmstadt.

    Google Scholar 

  17. Lakatos I. and Lakatos-Szabó, J.: 1995, Magyar Kémiai Folyóirat 101, 517.

    Google Scholar 

  18. Hirst W. and Harrison G. E.: 1939, The diffusion of radon gas mixtures, Proc. Royal Soc. 169.

  19. Bird R. B., Stewart, W. E. and Lightfoot, E. N.: 1960, Transport Phenomena, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LAKATOS, I., BAUER, K., LAKATOS-SZABÓ, J. et al. Diffusion of Randon in Porous Media Saturated with Gels and Emulsions. Transport in Porous Media 27, 171–184 (1997). https://doi.org/10.1023/A:1006564200829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006564200829

Navigation