Skip to main content
Log in

Transport of Multi-Electrolytes in Charged Hydrated Biological Soft Tissues

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A mechano-electrochemical theory for charged hydrated soft tissues with multi-electrolytes was developed based on the continuum mixture theory. The momentum equations for water and ions were derived in terms of a mechanochemical force (gradient of water chemical potential), electrochemical forces (gradient of Nernst potentials) and an electrical force (gradient of electrical potential). The theory was shown to be consistent with all existing specialized theories. Using this theory, some mechano-electrokinetic properties of charged isotropic tissues were studied. The well-known Hodgkin–Huxley equation for resting cell membrane potential was derived and the phenomenon of electro-osmotic flow in charged hydrated soft tissues was investigated. Analyses show that the tissue fixed charge density plays an important role in controlling the transport of water and ions in charged hydrated soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achanta, S., Cushman, J. H. and Okos, M. R.: 1994, On multicomponent, multiphasic thermomechanics with interfaces, Int. J. Engng. Sci. 32, 1717-1738.

    Google Scholar 

  • Bowen, R. M.: 1980, Incompressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci. 18, 1129-1148.

    Google Scholar 

  • Coelho, D., Shapiro, M., Thovert, J. F. and Adler, P. M.: 1996, Electroosmotic phenomena in porous media, J. Colloid Interf. Sci. 181, 169-190.

    Google Scholar 

  • Donnan, F. G.: 1924, The theory of membrane equilibria, Chem. Rev. 1, 73-90.

    Google Scholar 

  • de Boer, R.: 1996, Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory, Appl. Mech. Rev. 49, 201-262.

    Google Scholar 

  • de Groot, S. R. and Mazur, P.: 1984, Non-Equilibrium Theormodynamics, Dover, New York.

    Google Scholar 

  • Fair, J. C. and Osterle, J. F.: 1971, Reverse electrodialysis in charged capillary membranes, J. Chem. Phys. 54, 3307-3316.

    Google Scholar 

  • Frank, E. H. and Grodzinsky, A. J.: 1987a, Cartilage electromechanics-I. Electrokinetic transduction and the effects of electrolyte ph and ionic strength, J. Biomech. 20, 615-627.

    Google Scholar 

  • Frank, E. H. and Grodzinsky, A. J.: 1987b, Cartilage electromechanics-II. A continuum model of cartilage electrokinetics and correlation with experiments, J. Biomech. 20, 629-639.

    Google Scholar 

  • Frank, E. H., Grodzinsky, A. J., Phillips, S. L. and Grimshaw, P. E.: 1990, Physicochemical and bioelectrical determinants of cartilage material properties, In: V. C. Mow, A. Ratcliffe and S. L.-Y. Woo (eds), Biomechanics of Diarthrodial Joints, Vol. 1, Springer-Verlag, New York, pp. 363-390.

    Google Scholar 

  • Grodzinsky, A. J.: 1990, Mechanical and electrical properties and their relevance to physiological processes, In: A. Maroudas and K. Kuettner (eds), Methods in Cartilage Research, Academic Press, San Diego, pp. 275-281.

    Google Scholar 

  • Gu, W. Y., Lai, W. M. and Mow, V. C.: 1993a, Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage, J. Biomech. 26, 709-723.

    Google Scholar 

  • Gu, W. Y., Lai, W. M. and Mow, V. C.: 1993b, Theoretical basis for measurements of cartilage fixed-charge density using streaming current and electro-osmosis effects, In: J. M. Tarbell (ed.), Adv. Bioeng. ASME, Vol. 26, BED, New York, pp. 55-58.

    Google Scholar 

  • Gu, W. Y., Lai, W. M. and Mow, V. C.: 1994, A generalized triphasic theory for multi-electrolyte transport in charged hydrated soft tissues, In: M. J. Askew (ed.), Adv. Bioeng. ASME, Vol. 28, BED, New York, pp. 217-218.

    Google Scholar 

  • Gu, W. Y., Lai, W. M. and Mow, V. C.: 1997, A triphasic analysis of negative osmotic flow through charged-hydrated soft tissues, J. Biomech. 30, 71-78.

    Google Scholar 

  • Gu, W. Y., Lai, W. M. and Mow, V. C.: 1998, A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors, J. Biomech. Engng. 120, 169-180.

    Google Scholar 

  • Heodug, W. K. and Wong, S-W.: 1996, Hydration swelling of water-absorbing rocks: a constitutive model, Int. J. Num. Anal. Methods Geomech. 20, 403-430.

    Google Scholar 

  • Helfferich, F.: 1962, Ion Exchange, McGraw-Hill, New York.

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F.: 1952a, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116, 473-496.

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F.: 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117, 500-544.

    Google Scholar 

  • Huyghe, J. M. and Janssen, J. D.: 1997, Quadriphasic mechanics of swelling incompressible porous media, Int. J. Engng. Sci. 35, 793-802.

    Google Scholar 

  • Katchalsky, A. and Curran, P. F.: 1975, Nonequilibrium Thermodynamics in Biophysics, 4th edn, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Kedem, O. and Katchalsky, A.: 1961, A physical interpretation of the phenomenological coefficients of membrane permeability, J. Gen. Physiol. 45, 143-179.

    Google Scholar 

  • Lai, W. M., Hou, J. S. and Mow, V. C.: 1991, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Engng. 113, 245-258.

    Google Scholar 

  • Lai, W. M., Gu, W. and Mow, V. C.: 1994, Flows of electrolytes through charged hydrated biologic tissue, Appl. Mech. Rev. 47 (part 2), 277-281.

    Google Scholar 

  • Maroudas, A.: 1968, Physicochemical properties of cartilage in the light of ion exchange theory, Biophy. J. 8, 575-595.

    Google Scholar 

  • Mow, V. C., Kuei, S. C., Lai, W. M. and Armstrong, C. G.: 1980, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, J. Biomech. Engng. 102, 73-84.

    Google Scholar 

  • Nernst, W.: 1888, Zur Kinetik der Lösung Befindlichen Körper: Theorie der Diffusion, Z. Phys. Chem. 3, 613-637.

    Google Scholar 

  • Onsager, L.: 1931a, Reciprocal relations in irreversible processes. I, Phys. Rev. 37, 405-426.

    Google Scholar 

  • Onsager, L.: 1931b, Reciprocal relations in irreversible processes. II, Phys. Rev. 38, 2265-2279.

    Google Scholar 

  • Salzstein, R. A., Pollack, S. R. and Mak, A. F. T.: 1987, Electromechanical potentials in cortical bone-I. A continuum approach, J. Biomech. 20, 261-270.

    Google Scholar 

  • Silberberg, A.: 1982, The mechanics and thermodynamics of separation flow through porous, molecularly disperse, solid media, Biorheology 19, 111-127.

    Google Scholar 

  • Teorell, T.: 1953, Transport processes and electrical phenomena in ionic membranes, Prog. Biophys. Physicochem. 3, 305-369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, W.M., Mow, V.C. Transport of Multi-Electrolytes in Charged Hydrated Biological Soft Tissues. Transport in Porous Media 34, 143–157 (1999). https://doi.org/10.1023/A:1006561408186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006561408186

Navigation