Skip to main content
Log in

A Note on Primes and Goldbach Numbers in Short Intervals

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let J(N, H) be the Selberg integral and E(x, T) the error term in Kaczorowski-Perelli's weighted form of the classical explicit formula. We prove that the estimate J(N, H) = o(H2 N) is connected with an appropriate estimate of ∫N 2N| E(x,T)2 dx, uniformly for H and T in some ranges. Moreover, assuming a suitable bound for ∫N 2N| E(x,T)|2 dx, we also obtain, for all sufficiently large N and H ≫ (log N)11/12, that every interval [N,N + H] contains ≫ H Goldbach numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Baker, G. Harman and J. Pintz, The exceptional set for Goldbach's problem in short intervals in Sieve Methods, Exponential Sums and their Applications in Number Theory (ed. G. R. H. Greaves et al.) Cambridge U. P. (1996), pp. 1–54.

  2. J. B. Conrey, At least two fifths of the zeros of the Riemann zeta function are on the critical line, Bull. A.M.S. 20 (1989), 79–81.

    Google Scholar 

  3. G. Coppola and A. Vitolo, On the distribution of primes in intervals of length logθ N, Acta Math. Hungar. 70 (1996), 151–166.

    Google Scholar 

  4. D. A. Goldston, Linnik's theorem on Goldbach numbers in short intervals, Glasgow Math. J. 32 (1990), 285–297.

    Google Scholar 

  5. D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, in Analytic Number Theory and Dioph. Probl. (ed. by A. C. Adolphson et al.), Birkhäuser Verlag (1987), pp. 183–203.

  6. D. R. Heath-Brown, The differences between consecutive primes, J. London Math. Soc. 18 (1978), 7–13.

    Google Scholar 

  7. A. Ivié, The Riemann Zeta-function J. Wiley (1985).

  8. C. Jia, Almost all short intervals contain prime numbers, Acta Arith. 76 (1996), 21–84.

    Google Scholar 

  9. J. Kaczorowski and A. Perelli, A new form of the Riemann-von Mangoldt explicit formula, Boll. U.M.I. 10-B (1996), 51–66.

    Google Scholar 

  10. J. Kaczorowski and A. Perelli, On the distribution of primes in short intervals, J. Math. Soc. Japan 45 (1993), 447–458.

    Google Scholar 

  11. I. Kátai, A remark on a paper of Ju. V. Linnik, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl 17 (1967), 99–100 (in Hungarian).

    Google Scholar 

  12. A. Languasco and A. Perelli, On Linnik's theorem on Goldbach numbers in short intervals and related problems, Ann. Inst. Fourier 44 (1994), 307–322.

    Google Scholar 

  13. H. L. Montgomery, Topics in Multiplicative Number Theory Springer L.N. 227 (1971).

  14. H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353–370.

    Google Scholar 

  15. A. Selberg, On the normal density of primen in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Languasco, A. A Note on Primes and Goldbach Numbers in Short Intervals. Acta Mathematica Hungarica 79, 191–206 (1998). https://doi.org/10.1023/A:1006553707162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006553707162

Keywords

Navigation