Annals of Global Analysis and Geometry

, Volume 17, Issue 4, pp 341–370 | Cite as

Generalized Killing Spinors and Conformal Eigenvalue Estimates for Spinc Manifolds

  • Marc Herzlich
  • Andrei Moroianu


In this paper we prove the Spinc analog of the Hijazi inequality on the first eigenvalue of the Dirac operator on compact Riemannian manifolds and study its equality case. During this study, we are naturally led to consider generalized Killing spinors on Spinc manifolds and we prove that such objects can only exist on low-dimensional manifolds (up to dimension three). This allows us to give a nice geometrical description of the manifolds satisfying the equality case of the above-mentioned inequality and to classify them in dimension three and four.

conformal eigenvalue estimates Killing spinors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M., Hitchin, N. and Singer, I.: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London A 362 (1978), 425–461.Google Scholar
  2. 2.
    Bando, S. and Mabuchi, T.: Uniqueness of Kähler-Einstein metrics modulo connected group actions, in Algebraic Geometry, Sendai, Adv. Stud. Pure Math. 10, Academic Press, Boston, 1987, pp. 11–40.Google Scholar
  3. 3.
    Bär, C.: Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 (1992), 39–46.Google Scholar
  4. 4.
    Bär, C.:, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509–521.Google Scholar
  5. 5.
    Barth, W., Peters, C. and Van de Ven, A.: Compact Complex Surfaces, Ergeb. Math. Grenzgeb. 4, Springer-Verlag, Berlin, 1984.Google Scholar
  6. 6.
    Baum, H.: Eigenvalue estimates for Dirac operators coupled to instantons, Humboldt University, Berlin, SFB 288, Preprint 88, 1993.Google Scholar
  7. 7.
    Baum, H., Friedrich, T., Grunewald, R. and Kath, I.: Twistors and Killing Spinors in Riemannian Geometry, Teubner, Berlin, 1990.Google Scholar
  8. 8.
    Besse, A. L.: Einstein Manifolds, Ergeb. Math. Grenzgeb. 10, Springer-Verlag, Berlin, 1987.Google Scholar
  9. 9.
    Blair, D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.Google Scholar
  10. 10.
    Friedrich, Th.: Der erste Eigenwert des Dirac Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117–146.Google Scholar
  11. 11.
    Friedrich, Th., Kath, I., Moroianu, A. and Semmelmann, U.: On nearly-parallel G 2-structures, J. Geom. Phys. 23 (1997), 259–286.Google Scholar
  12. 12.
    Gauduchon, P.: Hermitian connections and dirac operators, Bolletino UMI (7) 11-B (1997), Suppl. fasc. 2, 257–288.Google Scholar
  13. 13.
    Gursky, M. and LeBrun, C.: Yamabe invariants and Spinc structures, Preprint, dg-ga/9708002, 1997.Google Scholar
  14. 14.
    Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys. 104 (1986), 151–162.Google Scholar
  15. 15.
    Hitchin, N. L.: On compact four-dimensional Einstein manifolds, J. Differential Geom. 9 (1974), 435–442.Google Scholar
  16. 16.
    Kronheimer, P. and Mrowka, T.: The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797–808.Google Scholar
  17. 17.
    Lawson, H. B. and Michelsohn, M. L.: Spin Geometry, Princeton Math. Ser. 38, Princeton University Press, Princeton, NJ, 1989.Google Scholar
  18. 18.
    Lott, J.: Eigenvalue bounds for the Dirac Operator, Pacific J. Math. 125 (1986), 117–128.Google Scholar
  19. 19.
    Maier, S.: Generic metrics and connections on Spin-and Spinc-manifolds, Comm. Math. Phys. 188 (1997), 407–437.Google Scholar
  20. 20.
    Moroianu, A.: On the infinitesimal isometries of manifolds with Killing spinors, Humboldt University, Berlin, SFB 288, Preprint 240, 1996.Google Scholar
  21. 21.
    Moroianu, A.: Parallel and Killing spinors on Spinc manifolds, Comm. Math. Phys. 187 (1997), 417–428.Google Scholar
  22. 22.
    Obata, M.: The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247–258.Google Scholar
  23. 23.
    Schrödinger, E.: Diracsches Elektron im Schwerfeld I, Sitzungsbericht der Preusischen Akademie der Wissenschaften Phys.-Math. Klasse 1932, Verlag der Akademie der Wissenschaften Berlin, 1932, pp. 436–460.Google Scholar
  24. 24.
    Tian, G.: On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101–172.Google Scholar
  25. 25.
    Wolf, J.: Spaces of Constant Curvature, McGraw-Hill, New York, 1967.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Marc Herzlich
    • 1
  • Andrei Moroianu
    • 2
  1. 1.Département de MathématiquesUniversité Montpellier II (Géométrie-Topologie et Algèbre, UPRESE du 5030 CNRS)MontpellierFrance
  2. 2.Centre de MathématiquesÉcole PolytechniquePalaiseauFrance

Personalised recommendations