Skip to main content
Log in

On the Role of the Interface Mechanical Interaction in a Gravity-Driven Shear Flow of an Ice-Till Mixture

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The ice-till mixtures at the base of glaciers and ice sheets play a very important role in the movement of the glaciers and ice sheets. This mixture is modelled as an isothermal flow which is overlain by a layer of pure ice. In this model, ice is treated as usual as a very viscous fluid with a constant true density, while till, which is assumed to consist of sediment and bound (that is, moving with the sediment) interstitial water and/or ice, is also assumed in a first approximation to behave such as a fluid. For an isothermal flow below the melting point the water component can be neglected. Therefore, only the mass and momentum balances for till and ice are needed. To complete the model, no-slip and stress-free boundary conditions are assumed at the base and free-surface, respectively. The transition from the till-ice mixture layer to the overlying pure ice layer is idealized in the model as a moving interface representing in the simplest case the till material boundary, at which jump balance relations for till and ice apply. The mechanical interactions are considered in the mixture basel layer, as well as at the interface via the surface production. The interface mechanical interaction is supposed to be only a function of the volume fraction jump across the interface. In the context of the thin-layer approximation, numerical solutions of the lowest-order form of the model show a till distribution which is reminiscent to the ice-till layer in geophysical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drew, D. A. and Segel, L. A.: 1971, Averaged equations for two-phase flows, Stud. Appl. Math. L, 205-231.

  2. Engelhardt, H. F., Harrison, W. D. and Kamb, B.: 1978, Basal sliding conditions at the glacier bed as revealed by borehole photography, J. Glaciol. 20, 469-508.

    Google Scholar 

  3. Hutter, K. and Vulliet, L.: 1985, Gravity-driven slow creeping flow of a thermoviscous body at elevated temperatures, J. Thermal Stresses 8, 99-138.

    Google Scholar 

  4. Hutter, K., Jöhnk, K. and Svendsen, B.: 1994, On interfacial transition conditions in two-phase gravity flow, Z. Angew. Math. Phys. 45, 746-762.

    Google Scholar 

  5. MacKenzie, D.: 1984, The generation and compaction of partially molten rock, J. Petrol. 25, 713-765.

    Google Scholar 

  6. Svendsen, B. and Hutter, K.: 1995, On the thermodynamics of a mixture of viscous fluids with constraints, Int. J. Engng. Sci. 33, 2021-2054.

    Google Scholar 

  7. Svendsen, B., Wu, T., Jöhnk, K. and Hutter, K.: 1996, On the role of mechanical interactions in the steady-state gravity flow of a two-constituent mixture down an incline plane, Proc. R. Soc. London A 452, 1189-1205.

    Google Scholar 

  8. Vulliet, L. and Hutter, K.: 1988a, A continuum model for natural slops in slow movement, Geotechnique 38, 199-217.

    Google Scholar 

  9. Vulliet, L. and Hutter, K.: 1988b, Set of constitutive models for soil under slow movement, J. Geotech. Engng. ASCE 114, 1022-1041.

    Google Scholar 

  10. Wu, T., Jöhnk, K., Svendsen, B. and Hutter, K.: 1996, On the gravity-driven shear flow of an ice-till mixture, Annal. Glaciol. 23, 359-363.

    Google Scholar 

  11. Wu, T., Hutter, K. and Svendsen, B.: 1998, On shear flow of a saturated ice-sediment mixture with thermodynamic equilibrium pressure and momentum exchange, Proc. Royal Soc. London A 454, 71-88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Hutter, K. On the Role of the Interface Mechanical Interaction in a Gravity-Driven Shear Flow of an Ice-Till Mixture. Transport in Porous Media 34, 3–15 (1999). https://doi.org/10.1023/A:1006544904552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006544904552

Navigation