Skip to main content
Log in

Coupled Solvent and Heat Transport of a Mixture of Swelling Porous Particles and Fluids: Single Time-Scale Problem

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A three-spatial scale, single time-scale model for both moisture and heat transport is developed for an unsaturated swelling porous media from first principles within a mixture theoretic framework. On the smallest (micro) scale, the system consists of macromolecules (clay particles, polymers, etc.) and a solvating liquid (vicinal fluid), each of which are viewed as individual phases or nonoverlapping continua occupying distinct regions of space and satisfying the classical field equations. These equations are homogenized forming overlaying continua on the intermediate (meso) scale via hybrid mixture theory (HMT). On the mesoscale the homogenized swelling particles consisting of the homogenized vicinal fluid and colloid are then mixed with two bulk phase fluids: the bulk solvent and its vapor. At this scale, there exists three nonoverlapping continua occupying distinct regions of space. On the largest (macro) scale the saturated homogenized particles, bulk liquid and vapor solvent, are again homogenized forming four overlaying continua: doubly homogenized vicinal fluid, doubly homogenized macromolecules, and singly homogenized bulk liquid and vapor phases. Two constitutive theories are developed, one at the mesoscale and the other at the macroscale. Both are developed via the Coleman and Noll method of exploiting the entropy inequality coupled with linearization about equilibrium. The macroscale constitutive theory does not rely upon the mesoscale theory as is common in other upscaling methods. The energy equation on either the mesoscale or macroscale generalizes de Vries classical theory of heat and moisture transport. The momentum balance allows for flow of fluid via volume fraction gradients, pressure gradients, external force fields, and temperature gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achanta, S. and Cushman, J. H.: Non-equilibrium swelling and capillary pressure relations for colloidal systems, J. Col. Int. Sci. 168 (1994), 266–268.

    Google Scholar 

  2. Achanta, S., Cushman, J. H. and Okos, M. R.: On multicomponent, multiphase thermomechanics with interfaces, Int. J. Engng. Sci. 32(11) (1994), 1717–1738.

    Google Scholar 

  3. Anderson, T. B. and Jackson, R.: Fluidized beds: equations of motion, Ind. Engng. Chem. Fundam. 6(4) (1967), 527–536

    Google Scholar 

  4. Baveye, P. and Sposito, G.: The operational significance of the continuum hypothesis in the theory of water movement through soils and aquifers, Water Resour. Res. 20(5) (1984), 521–530.

    Google Scholar 

  5. Bear, J.: Dynamics of Fluids in Porous Media, Dover, New York, 1972.

    Google Scholar 

  6. Bennethum, L. S.: Multiscale, hybrid mixture theory for swelling systems with interfaces, PhD Thesis, Purdue University, West Lafayette, Indiana, 47907, 1994.

    Google Scholar 

  7. Bennethum, L. S. and Cushman, J. H.: Multiscale, hybrid mixture theory for swelling systems – I: Balance laws, Int. J. Engng. Sci. 34(2) (1996a), 125–145.

    Google Scholar 

  8. Bennethum, L. S. and Cushman, J. H.: Multiscale, hybrid mixture theory for swelling systems – II: Constitutive theory, Int. J. Engng. Sci. 34(2) (1996b), 147–169.

    Google Scholar 

  9. Bennethum, L. S. and Giorgi, T.: Generalized Forchheimer Law for two-phase flow based on hybrid mixture theory, Transport in Porous Media. 26(3) (1997), 261–275.

    Google Scholar 

  10. Bennethum, L. S., Murad, M. A. and Cushman, J. H.: Clarifying mixture theory and the macroscale chemical potential for porous media, Int. J. Engng. Sci. 34(14) (1996), 1611–1621.

    Google Scholar 

  11. Bennethum, L. S., Murad, M. A. and Cushman, J. H.: Modified Darcy's law, Terzaghi's effective stress principle and Fick's law for swelling clay soils, Comput. Geotech. 20(3/4) (1997), 245–266.

    Google Scholar 

  12. Bouddour, A., Auriault, J.-L. and Mhamdi–Alaoui, M.: Heat and mass transfer in wet porous media in presence of evaporation condensation. Int. J. Heat Mass Transfer 41 (1993), 2263–2277.

    Google Scholar 

  13. Bowen, R. M.: Compressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 20 (1982), 697–735.

    Google Scholar 

  14. Callen, H. B.: Thermodynamics and an Introduction to Thermostatistics, John Wiley and Sons, New York, 1985.

    Google Scholar 

  15. Carey, J. W.: Onsager's relation and nonisothermal diffusion of water vapor, J. Phys. Chem. 67 (1963), 126–129.

    Google Scholar 

  16. Carey, J.W.: An evaporation experiment and its irreversible thermodynamics, Int. J. Heat Mass Transfer 7 (1964), 531–538

    Google Scholar 

  17. Coleman, B. D. and Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal. 13 (1963), 167–178.

    Google Scholar 

  18. Cushman, J. H.: Multiphase transport based on compact distributions, Acta Applicandae Mathematicae 3 (1985), 239–254.

    Google Scholar 

  19. Cushman, J. H.: An introduction to fluids in hierarchical porous media, In: J. H. Cushman (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, 1990a, pp. 1–6.

    Google Scholar 

  20. Cushman, J.H.: Molecular-scale Lubrication, Nature 347(6290) (1990b), 227–228.

    Google Scholar 

  21. Cushman, J. H.: The Physics of Fluids in Heirarchical Porous Media: Angstroms to Miles, Kluwer Academic, Dordrecht–Boston, 1997.

    Google Scholar 

  22. Cushman, J. H., Hu, X. and Ginn, T. R.: Nonequilibrium statistical mechanics of preasymptotic dispersion, J. Stat. Phys. 75 (1994), 859–878.

    Google Scholar 

  23. de Vries, D. A.: Simultaneous transfer of heat and moisture in porous media, Transac. Am. Geophys. Union 39(5) (1958), 909–916.

    Google Scholar 

  24. Deryaguin, B. V. and Melnikova, M. K.: Experimental study of the migration of water through the soil under the influence of salt concentration, temperature, and moisture gradients, In: Int. Congr. Soil Sci., Trans. 6th (Paris), 1956, pp. 305–314.

  25. Eringen, A. C.: Mechanics of Continua, John Wiley and Sons, New York, 1967.

    Google Scholar 

  26. Gray, W. G. and Hassanizadeh, S.M.: Averaging theorems and averaged equations for transport of interface properties in multiphase systems, Int. J. Multiphase Flow 15 (1989), 81–95.

    Google Scholar 

  27. Gray, W. G. and Hassanizadeh, S. M.: Paradoxes and realities in unsaturated flow theory, Water Resour. Res. 27 (1991a), 1847–1854.

    Google Scholar 

  28. Gray, W. G. and Hassanizadeh, S. M.: Unsaturated flow theory including interfacial phenomena, Water Resour. Res. 27 (1991b), 1855–1863.

    Google Scholar 

  29. Gray, W. G. and Hassanizadeh, S. M.: Macroscale continuum mechanics for multiphase porous–media flow including phases, interfaces, common lines, and common points, Adv.Water Resour. 21(4) (1998), 261–281.

    Google Scholar 

  30. Grim, R. E.: Clay Mineralogy, McGraw-Hill, New York, 1968.

    Google Scholar 

  31. Groetsch, C.W.: Elements of Applicable Functional Analysis, Marcel Dekker, New York, 1980.

    Google Scholar 

  32. Hadas, A.: Evaluation of theoretically predicted thermal conductivities of soils under field and laboratory conditions, Soil Sci. Soc. Am. J. 41 (1980), 460–466.

    Google Scholar 

  33. Hassanizadeh, S. M.: Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws, Adv. Water Resour. 9 (1986a), 196–206.

    Google Scholar 

  34. Hassanizadeh, S. M.: Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws, Adv. Water Resour. 9 (1986b), 207–222.

    Article  Google Scholar 

  35. Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 1. Averaging procedure, Adv. Water Resour. 2 (1979a), 131–144.

    Google Scholar 

  36. Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour. 2 (1979b), 191–208.

    Google Scholar 

  37. Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 3. Constitutive theory for porous media, Adv. Water Resour. 3 (1980), 25–40.

    Google Scholar 

  38. Hassanizadeh, S. M. and Gray, W. G.: High velocity flow in porous media, Transport in Porous Media. 2 (1987), 521–531.

    Google Scholar 

  39. Hassanizadeh, S. M. and Gray, W. G.: Thermodynamic basis of capillary pressure in porous media, Water Resour. Res. 29(10) (1993a), 3389–3405.

    Article  Google Scholar 

  40. Hassanizadeh, S. M. and Gray, W. G.: Toward an improved description of the physics of twophase flow, Adv. Water Resour. 16 (1993b), 53–67.

    Article  Google Scholar 

  41. Israelachvili, J.: Intermolecular and Surface Forces, Academic Press, New York, 1992.

    Google Scholar 

  42. Low, P. F.: Nature and properties of water in montmorillonite-water systems, J. Soil Sci. Soc. Am. 43 (1979), 651–658.

    Google Scholar 

  43. Low, P. F.: The swelling of clay, II. Montmorillonites-water systems, J. Soil Sci. Soc. Am. 44 (1980), 667–676.

    Google Scholar 

  44. Moeckel, G. P.: Thermodynamics of an interface, Arch. Rat. Mech. Anal. 57 (1975), 255–280.

    Google Scholar 

  45. Murad, M. A., Bennethum, L. S. and Cushman, J. H.: A multi-scale theory of swelling porous media: I. Application to one-dimensional consolidation, Transport in Porous Media 19 (1995), 93–122.

    Google Scholar 

  46. Murad, M. A. and Cushman, J. H.: Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Engng. Sci. 34(3) (1996), 313–336.

    Google Scholar 

  47. Rollins, R. L., Spangler, M. G. and Kirkham, D.: Movement of Soil Moisture Under a Thermal Gradient, Highway Research Board Proc. 33 (1954), 492–508.

    Google Scholar 

  48. Schoen, M., Diestler, D. J. and Cushman, J. H.: Fluids in micropores. I. Structure of a simple classical fluid in a slit-pore, J. Chem. Phys. 87(9) (1987), 5464–5476.

    Google Scholar 

  49. Showalter, R.: Diffusion models with microstructure, Transport in Porous Media 6 (1991), 567–580.

    Google Scholar 

  50. Taylor, S. A. and Carey, J. W.: Analysis of simultaneous flow of water and heat or electricity with the thermodynamics of irreversible processes, In: 7th Int. Congr. of Soil Sci. Trans., Vol. 1. 1960, pp. 80–90.

    Google Scholar 

  51. Terzaghi, K.: Theoretical Soil Mechanics, John Wiley and Sons, New York, 1943.

    Google Scholar 

  52. Truesdell, C. and Toupin, R. A. The classical field theories, In: S. Flügge ed., Handbuch der Physik, Springer-Verlag, New York, 1960.

    Google Scholar 

  53. Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: A theory of drying, Adv. Heat Transfer (1977), pp. 119–203.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennethum, L.S., Cushman, J.H. Coupled Solvent and Heat Transport of a Mixture of Swelling Porous Particles and Fluids: Single Time-Scale Problem. Transport in Porous Media 36, 211–244 (1999). https://doi.org/10.1023/A:1006534302277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006534302277

Navigation