Skip to main content

Post-Viking Microbiology: New Approaches, New Data, New Insights

Abstract

In the 20 years since the Viking experiments, major advances have been made in the areas of microbial systematics, microbial metabolism, microbial survival capacity, and the definition of environments on earth, suggesting that life is more versatile and tenacious than was previously appreciated. Almost all niches on earth which have available energy, and which are compatible with the chemistry of carbon-carbon bonds, are known to be inhabited by bacteria. The oldest known bacteria on earth apparently evolved soon after the formation of the planet, and are heat loving, hydrogen and/or sulfur metabolizing forms. Among the two microbial domains (kingdoms) is a great deal of metabolic diversity, with members of these forms being able to grow on almost any known energy source, organic or inorganic, and to utilize an impressive array of electron acceptors for anaerobic respiration. Both hydrothermal environments and the deep subsurface environments have been shown to support large populations of bacteria, growing on energy supplied by geothermal energy, thus isolating these ecosystems from the rest of the global biogeochemical cycles. This knowledge, coupled with new insights into the history of the solar system, allow one to speculate on possible evolution and survival of life forms on Mars.

This is a preview of subscription content, access via your institution.

References

  • Amann, R., Ludwig, W. and Schleifer, K.-H.: 1994, Amer. Soc. Microbiol. News 60, 360.

    Google Scholar 

  • Amann, R. I., Krumholz, L. and Stahl, D. A.: 1990, J. Bacteriol. 172, 762.

    PubMed  Google Scholar 

  • Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A.: 1992, Appl. Environ. Microbiol. 58, 614.

    PubMed  Google Scholar 

  • Baker, V. R., Strom, R. G., Bulick, V. C., Kargel, J. S., Komatsu, G. and Kate, V. S.: 1991, Nature 352, 589.

    Google Scholar 

  • Barns, S. M., Fundyga, R. E., Jeffries, M. W. and Pace, N. R.: 1994, Proc. Nat. Acad. Sci. USA 91, 1609.

    Google Scholar 

  • Cano, R., Borucki, M., Higby-Schweitzer, M., Poinar, G., Poinar, G. and Pollard, K.: 1994, Environ. Microbiol. 60, 2164.

    Google Scholar 

  • Cano, R. and Borucki, M.: 1995, Science 268, 1060.

    PubMed  Google Scholar 

  • Collins, S., Pope, R., Scheetz, R., Ray, R.Wagner, P. and Little, B.: 1993, Microscopy Res. Tech. 25, 398.

    Google Scholar 

  • Daley, R. and Hobbie, J.: 1975, Limnol. Oceanogr. 20, 875.

    Google Scholar 

  • Denner, E., McGenity, T., Busse, H.-J., Grant, W., Wanner, G. and Stan-Lotter, H.: 1994, Int. J. Syst. Bacteriol. 44, 774.

    Google Scholar 

  • Devereux, R., Kane, M. D., Winfrey, J. and Stahl, D. A.: 1992, System. Appl. Microbiol. 15, 601.

    Google Scholar 

  • Ehrenreich, A. and Widdel, F.: 1994, Appl. Environ. Microbiol. 60, 4517.

    PubMed  Google Scholar 

  • Fenchel, T. and Finlay, B. J.: 1994, Amer. Sci. 82, 22.

    Google Scholar 

  • Fredrickson, J. K. and Onstott, T. C.: 1996, Sci. Amer. Oct, 68.

  • Friedmann, E.: 1982, Science 215, 1045.

    Google Scholar 

  • Ghiorse, W. C.: 1984, Ann. Rev. Microbiol. 38, 515.

    Google Scholar 

  • Green, W. J. and Friedmann, E. I. (eds.): 1993, Physical and Biogeochemical Processes in Antarctic Lakes. American Geophysical Union, Washington, DC.

    Google Scholar 

  • Jannasch, H. W.: 1985, Proc. R. Soc. Lond. B. 225, 277.

    Google Scholar 

  • Johnston, D. and Vestal, J. R. 1991, Appl. Envir. Microbiol. 57, 2308.

    Google Scholar 

  • Jørgensen, B. B.: 1989, in Y. Cohen and E. Rosenberg (eds.), Microbial Mats, Amer. Soc. Microbiol. Washington DC, pp. 123–128.

    Google Scholar 

  • Kepkay, P. and Nealson, K.: 1987, Arch. Microbiol. 148, 63.

    Google Scholar 

  • Klein, H. P.: 1976, Origins of Life 7, 273.

    PubMed  Google Scholar 

  • Klein, H. P.: 1978, Icarus 34, 666.

    Google Scholar 

  • Klein, H. P.: 1979, Rev. Geophys. and Space Physics 17, 1655.

    Google Scholar 

  • Little, B., Wagner, P., Ray, R., Hart, K., Lavoie, D., Nealson, K. and Aguilar, C.: 1997, Corrosion 97 215, 1–11.

    Google Scholar 

  • Little, B., Wagner, P., Ray, R. Pope, R. and Scheetz, R.: 1991, J. Indus. Microbiol. 8, 213.

    Google Scholar 

  • Lovley, D. and Phillips, E. J.: 1988, Appl. Environ. Microbiol. 51, 683.

    Google Scholar 

  • Maidak, B. L., Larsen, N., McCaughey, M. J., Overbeek, R., Olsen, G., Fogel, K., Blandy, J. and Woese, C. R.: 1994, Nucl. Acids. Res. 22, 3485.

    PubMed  Google Scholar 

  • Margulis, L.: 1981, Symbiosis in Cell Evolution. W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • McKay, C. P., Friedman, E. I., Wharton, R. A. and Davies, W. L.: 1992, Adv. Space Res. 12, 231.

    Google Scholar 

  • Mojzsis, S., Arrhenius, G., McKeegan, K., Harrison, T., Nutman, A. and Friends, C.: 1996, Nature 384, 55.

    Article  PubMed  Google Scholar 

  • Myers C. R. and Nealson, K. H.: 1988, Science 240, 1319.

    Google Scholar 

  • Nealson, K. H.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 2311–2320.

    Google Scholar 

  • Nealson, K. H.: 1997, Ann. Rev. Earth Plan. Sci., (in press).

  • Nealson, K. H. and Saffarini, D. W.: 1994, Ann. Rev. Microbiol. 48, 311.

    Google Scholar 

  • Olson, G., Lane, D., Giovannoni, S. and Pace, N.: 1986, Ann. Rev. Microbiol. 40, 337.

    Google Scholar 

  • Olsen, G., Woese, C. and Overbeek, R.: 1994, J. Bacteriol. 176(1), 1.

    PubMed  Google Scholar 

  • Pace, N., Angert, E., DeLong, E., Schmidt, T. and Wickham, G.: 1993, in R. H. Baltz, G. D. Hegeman, P. L. Skatrud (eds.), Industrial Microorganisms: Basic and Applied Molecular Genetics, Washington DC, Amer. Soc. Microbiol., pp. 77–84.

    Google Scholar 

  • Pace, N., Stahl, D., Lane, D. and Olsen, G.: 1986, in K. C. Marshall (ed.), Advances in Microbial Ecology, Plenum Press, pp. 1–55.

  • Parkes, R., Cragg, B., Bale, S., Getliff, J., Goodman, K., Rochelle, P., Fry, J., Weightman, A. and Harvey, S.: 1994, Nature (London) 371, 410.

    Google Scholar 

  • Pierson, B. K., Sands, V. M. and Frederick, J. L.: 1990, Appl. Environ. Microbiol. 56, 2327.

    Google Scholar 

  • Raskin, L., Poulsen, L., Noguera, D., Rittmann, B. and Stahl, D.: 1994, Appl. Environ. Microbiol. 60, 1241.

    Google Scholar 

  • Revsbech, N. P., Christensen, P. B. and Nielsen, L. P.: 1989, in Y. Cohen and E. Rosenberg (eds.), Microbial Mats, Amer. Soc. Microbiol., Washington DC, pp. 155–162.

    Google Scholar 

  • Revsbech, N. P. and Jørgensen, B. B.: 1986, Adv. Microbial Ecol. 9, 293.

    Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H., and Cohen, Y.: 1983, Limnol. Oceanog. 28, 1062.

    Google Scholar 

  • Revsbech, N. P. and Ward, D. M.: 1984, Appl. Environ. Microbiol. 48, 270.

    Google Scholar 

  • Reysenback A.-L., Wickham, G. and Pace, N.: 1994, Appl. Environ. Microbiol. 60, 2113.

    PubMed  Google Scholar 

  • Risatti, J., Capman, W. and Stahl, D.: 1994, Proc. Nat. Acad. Sci. USA 91, 10173.

    PubMed  Google Scholar 

  • Schink, B.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 276–99.

    Google Scholar 

  • Schlegel, H. and Jannasch, H.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and H.-H. Schleifer (eds.), The Prokaryotes, Springer-Verlag, New York, pp. 75–125.

    Google Scholar 

  • Schmidt, T., DeLong, E. and Pace, N.: 1991, J. Bacteriol. 173, 4371.

    PubMed  Google Scholar 

  • Schopf, J. W.: 1983, The Evolution of the Biosphere.

  • Shock, E., McCollom, T. and Schulte, M.: 1995, Origin Life Evol. Biosphere 25, 141.

    Google Scholar 

  • Stevens, T. and McKinley, J.: 1995, Science 270, 450.

    Google Scholar 

  • Straub, K., Benz, M., Schink, B. and Widdel, F.: 1996, Appl. Env. Microbiol. 62, 1458.

    Google Scholar 

  • Tiedje, J.: 1994, Microbial diversity: of value to whom?, ASM News 60, 524.

    Google Scholar 

  • Widdel, F. and Hanson, T.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 583–624.

    Google Scholar 

  • Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B.: 1993, Nature 362, 834.

    Google Scholar 

  • Woese, C. R.: 1987, Bacteriol. Rev. 51, 221.

    Google Scholar 

  • Woese, C. R.: 1994, Microbiol. Rev. 58, 1.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nealson, K.H. Post-Viking Microbiology: New Approaches, New Data, New Insights. Orig Life Evol Biosph 29, 73–93 (1999). https://doi.org/10.1023/A:1006515817767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006515817767

Keywords