Post-Viking Microbiology: New Approaches, New Data, New Insights

Abstract

In the 20 years since the Viking experiments, major advances have been made in the areas of microbial systematics, microbial metabolism, microbial survival capacity, and the definition of environments on earth, suggesting that life is more versatile and tenacious than was previously appreciated. Almost all niches on earth which have available energy, and which are compatible with the chemistry of carbon-carbon bonds, are known to be inhabited by bacteria. The oldest known bacteria on earth apparently evolved soon after the formation of the planet, and are heat loving, hydrogen and/or sulfur metabolizing forms. Among the two microbial domains (kingdoms) is a great deal of metabolic diversity, with members of these forms being able to grow on almost any known energy source, organic or inorganic, and to utilize an impressive array of electron acceptors for anaerobic respiration. Both hydrothermal environments and the deep subsurface environments have been shown to support large populations of bacteria, growing on energy supplied by geothermal energy, thus isolating these ecosystems from the rest of the global biogeochemical cycles. This knowledge, coupled with new insights into the history of the solar system, allow one to speculate on possible evolution and survival of life forms on Mars.

This is a preview of subscription content, access via your institution.

References

  1. Amann, R., Ludwig, W. and Schleifer, K.-H.: 1994, Amer. Soc. Microbiol. News 60, 360.

    Google Scholar 

  2. Amann, R. I., Krumholz, L. and Stahl, D. A.: 1990, J. Bacteriol. 172, 762.

    PubMed  Google Scholar 

  3. Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A.: 1992, Appl. Environ. Microbiol. 58, 614.

    PubMed  Google Scholar 

  4. Baker, V. R., Strom, R. G., Bulick, V. C., Kargel, J. S., Komatsu, G. and Kate, V. S.: 1991, Nature 352, 589.

    Google Scholar 

  5. Barns, S. M., Fundyga, R. E., Jeffries, M. W. and Pace, N. R.: 1994, Proc. Nat. Acad. Sci. USA 91, 1609.

    Google Scholar 

  6. Cano, R., Borucki, M., Higby-Schweitzer, M., Poinar, G., Poinar, G. and Pollard, K.: 1994, Environ. Microbiol. 60, 2164.

    Google Scholar 

  7. Cano, R. and Borucki, M.: 1995, Science 268, 1060.

    PubMed  Google Scholar 

  8. Collins, S., Pope, R., Scheetz, R., Ray, R.Wagner, P. and Little, B.: 1993, Microscopy Res. Tech. 25, 398.

    Google Scholar 

  9. Daley, R. and Hobbie, J.: 1975, Limnol. Oceanogr. 20, 875.

    Google Scholar 

  10. Denner, E., McGenity, T., Busse, H.-J., Grant, W., Wanner, G. and Stan-Lotter, H.: 1994, Int. J. Syst. Bacteriol. 44, 774.

    Google Scholar 

  11. Devereux, R., Kane, M. D., Winfrey, J. and Stahl, D. A.: 1992, System. Appl. Microbiol. 15, 601.

    Google Scholar 

  12. Ehrenreich, A. and Widdel, F.: 1994, Appl. Environ. Microbiol. 60, 4517.

    PubMed  Google Scholar 

  13. Fenchel, T. and Finlay, B. J.: 1994, Amer. Sci. 82, 22.

    Google Scholar 

  14. Fredrickson, J. K. and Onstott, T. C.: 1996, Sci. Amer. Oct, 68.

  15. Friedmann, E.: 1982, Science 215, 1045.

    Google Scholar 

  16. Ghiorse, W. C.: 1984, Ann. Rev. Microbiol. 38, 515.

    Google Scholar 

  17. Green, W. J. and Friedmann, E. I. (eds.): 1993, Physical and Biogeochemical Processes in Antarctic Lakes. American Geophysical Union, Washington, DC.

    Google Scholar 

  18. Jannasch, H. W.: 1985, Proc. R. Soc. Lond. B. 225, 277.

    Google Scholar 

  19. Johnston, D. and Vestal, J. R. 1991, Appl. Envir. Microbiol. 57, 2308.

    Google Scholar 

  20. Jørgensen, B. B.: 1989, in Y. Cohen and E. Rosenberg (eds.), Microbial Mats, Amer. Soc. Microbiol. Washington DC, pp. 123–128.

    Google Scholar 

  21. Kepkay, P. and Nealson, K.: 1987, Arch. Microbiol. 148, 63.

    Google Scholar 

  22. Klein, H. P.: 1976, Origins of Life 7, 273.

    PubMed  Google Scholar 

  23. Klein, H. P.: 1978, Icarus 34, 666.

    Google Scholar 

  24. Klein, H. P.: 1979, Rev. Geophys. and Space Physics 17, 1655.

    Google Scholar 

  25. Little, B., Wagner, P., Ray, R., Hart, K., Lavoie, D., Nealson, K. and Aguilar, C.: 1997, Corrosion 97 215, 1–11.

    Google Scholar 

  26. Little, B., Wagner, P., Ray, R. Pope, R. and Scheetz, R.: 1991, J. Indus. Microbiol. 8, 213.

    Google Scholar 

  27. Lovley, D. and Phillips, E. J.: 1988, Appl. Environ. Microbiol. 51, 683.

    Google Scholar 

  28. Maidak, B. L., Larsen, N., McCaughey, M. J., Overbeek, R., Olsen, G., Fogel, K., Blandy, J. and Woese, C. R.: 1994, Nucl. Acids. Res. 22, 3485.

    PubMed  Google Scholar 

  29. Margulis, L.: 1981, Symbiosis in Cell Evolution. W. H. Freeman and Co., San Francisco.

    Google Scholar 

  30. McKay, C. P., Friedman, E. I., Wharton, R. A. and Davies, W. L.: 1992, Adv. Space Res. 12, 231.

    Google Scholar 

  31. Mojzsis, S., Arrhenius, G., McKeegan, K., Harrison, T., Nutman, A. and Friends, C.: 1996, Nature 384, 55.

    Article  PubMed  Google Scholar 

  32. Myers C. R. and Nealson, K. H.: 1988, Science 240, 1319.

    Google Scholar 

  33. Nealson, K. H.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 2311–2320.

    Google Scholar 

  34. Nealson, K. H.: 1997, Ann. Rev. Earth Plan. Sci., (in press).

  35. Nealson, K. H. and Saffarini, D. W.: 1994, Ann. Rev. Microbiol. 48, 311.

    Google Scholar 

  36. Olson, G., Lane, D., Giovannoni, S. and Pace, N.: 1986, Ann. Rev. Microbiol. 40, 337.

    Google Scholar 

  37. Olsen, G., Woese, C. and Overbeek, R.: 1994, J. Bacteriol. 176(1), 1.

    PubMed  Google Scholar 

  38. Pace, N., Angert, E., DeLong, E., Schmidt, T. and Wickham, G.: 1993, in R. H. Baltz, G. D. Hegeman, P. L. Skatrud (eds.), Industrial Microorganisms: Basic and Applied Molecular Genetics, Washington DC, Amer. Soc. Microbiol., pp. 77–84.

    Google Scholar 

  39. Pace, N., Stahl, D., Lane, D. and Olsen, G.: 1986, in K. C. Marshall (ed.), Advances in Microbial Ecology, Plenum Press, pp. 1–55.

  40. Parkes, R., Cragg, B., Bale, S., Getliff, J., Goodman, K., Rochelle, P., Fry, J., Weightman, A. and Harvey, S.: 1994, Nature (London) 371, 410.

    Google Scholar 

  41. Pierson, B. K., Sands, V. M. and Frederick, J. L.: 1990, Appl. Environ. Microbiol. 56, 2327.

    Google Scholar 

  42. Raskin, L., Poulsen, L., Noguera, D., Rittmann, B. and Stahl, D.: 1994, Appl. Environ. Microbiol. 60, 1241.

    Google Scholar 

  43. Revsbech, N. P., Christensen, P. B. and Nielsen, L. P.: 1989, in Y. Cohen and E. Rosenberg (eds.), Microbial Mats, Amer. Soc. Microbiol., Washington DC, pp. 155–162.

    Google Scholar 

  44. Revsbech, N. P. and Jørgensen, B. B.: 1986, Adv. Microbial Ecol. 9, 293.

    Google Scholar 

  45. Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H., and Cohen, Y.: 1983, Limnol. Oceanog. 28, 1062.

    Google Scholar 

  46. Revsbech, N. P. and Ward, D. M.: 1984, Appl. Environ. Microbiol. 48, 270.

    Google Scholar 

  47. Reysenback A.-L., Wickham, G. and Pace, N.: 1994, Appl. Environ. Microbiol. 60, 2113.

    PubMed  Google Scholar 

  48. Risatti, J., Capman, W. and Stahl, D.: 1994, Proc. Nat. Acad. Sci. USA 91, 10173.

    PubMed  Google Scholar 

  49. Schink, B.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 276–99.

    Google Scholar 

  50. Schlegel, H. and Jannasch, H.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and H.-H. Schleifer (eds.), The Prokaryotes, Springer-Verlag, New York, pp. 75–125.

    Google Scholar 

  51. Schmidt, T., DeLong, E. and Pace, N.: 1991, J. Bacteriol. 173, 4371.

    PubMed  Google Scholar 

  52. Schopf, J. W.: 1983, The Evolution of the Biosphere.

  53. Shock, E., McCollom, T. and Schulte, M.: 1995, Origin Life Evol. Biosphere 25, 141.

    Google Scholar 

  54. Stevens, T. and McKinley, J.: 1995, Science 270, 450.

    Google Scholar 

  55. Straub, K., Benz, M., Schink, B. and Widdel, F.: 1996, Appl. Env. Microbiol. 62, 1458.

    Google Scholar 

  56. Tiedje, J.: 1994, Microbial diversity: of value to whom?, ASM News 60, 524.

    Google Scholar 

  57. Widdel, F. and Hanson, T.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 583–624.

    Google Scholar 

  58. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B.: 1993, Nature 362, 834.

    Google Scholar 

  59. Woese, C. R.: 1987, Bacteriol. Rev. 51, 221.

    Google Scholar 

  60. Woese, C. R.: 1994, Microbiol. Rev. 58, 1.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nealson, K.H. Post-Viking Microbiology: New Approaches, New Data, New Insights. Orig Life Evol Biosph 29, 73–93 (1999). https://doi.org/10.1023/A:1006515817767

Download citation

Keywords

  • Respiration
  • Solar System
  • Electron Acceptor
  • Life Form
  • Major Advance