Post-Viking Microbiology: New Approaches, New Data, New Insights

  • Kenneth H. Nealson


In the 20 years since the Viking experiments, major advances have been made in the areas of microbial systematics, microbial metabolism, microbial survival capacity, and the definition of environments on earth, suggesting that life is more versatile and tenacious than was previously appreciated. Almost all niches on earth which have available energy, and which are compatible with the chemistry of carbon-carbon bonds, are known to be inhabited by bacteria. The oldest known bacteria on earth apparently evolved soon after the formation of the planet, and are heat loving, hydrogen and/or sulfur metabolizing forms. Among the two microbial domains (kingdoms) is a great deal of metabolic diversity, with members of these forms being able to grow on almost any known energy source, organic or inorganic, and to utilize an impressive array of electron acceptors for anaerobic respiration. Both hydrothermal environments and the deep subsurface environments have been shown to support large populations of bacteria, growing on energy supplied by geothermal energy, thus isolating these ecosystems from the rest of the global biogeochemical cycles. This knowledge, coupled with new insights into the history of the solar system, allow one to speculate on possible evolution and survival of life forms on Mars.


Respiration Solar System Electron Acceptor Life Form Major Advance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann, R., Ludwig, W. and Schleifer, K.-H.: 1994, Amer. Soc. Microbiol. News 60, 360.Google Scholar
  2. Amann, R. I., Krumholz, L. and Stahl, D. A.: 1990, J. Bacteriol. 172, 762.PubMedGoogle Scholar
  3. Amann, R. I., Stromley, J., Devereux, R., Key, R. and Stahl, D. A.: 1992, Appl. Environ. Microbiol. 58, 614.PubMedGoogle Scholar
  4. Baker, V. R., Strom, R. G., Bulick, V. C., Kargel, J. S., Komatsu, G. and Kate, V. S.: 1991, Nature 352, 589.Google Scholar
  5. Barns, S. M., Fundyga, R. E., Jeffries, M. W. and Pace, N. R.: 1994, Proc. Nat. Acad. Sci. USA 91, 1609.Google Scholar
  6. Cano, R., Borucki, M., Higby-Schweitzer, M., Poinar, G., Poinar, G. and Pollard, K.: 1994, Environ. Microbiol. 60, 2164.Google Scholar
  7. Cano, R. and Borucki, M.: 1995, Science 268, 1060.PubMedGoogle Scholar
  8. Collins, S., Pope, R., Scheetz, R., Ray, R.Wagner, P. and Little, B.: 1993, Microscopy Res. Tech. 25, 398.Google Scholar
  9. Daley, R. and Hobbie, J.: 1975, Limnol. Oceanogr. 20, 875.Google Scholar
  10. Denner, E., McGenity, T., Busse, H.-J., Grant, W., Wanner, G. and Stan-Lotter, H.: 1994, Int. J. Syst. Bacteriol. 44, 774.Google Scholar
  11. Devereux, R., Kane, M. D., Winfrey, J. and Stahl, D. A.: 1992, System. Appl. Microbiol. 15, 601.Google Scholar
  12. Ehrenreich, A. and Widdel, F.: 1994, Appl. Environ. Microbiol. 60, 4517.PubMedGoogle Scholar
  13. Fenchel, T. and Finlay, B. J.: 1994, Amer. Sci. 82, 22.Google Scholar
  14. Fredrickson, J. K. and Onstott, T. C.: 1996, Sci. Amer. Oct, 68.Google Scholar
  15. Friedmann, E.: 1982, Science 215, 1045.Google Scholar
  16. Ghiorse, W. C.: 1984, Ann. Rev. Microbiol. 38, 515.Google Scholar
  17. Green, W. J. and Friedmann, E. I. (eds.): 1993, Physical and Biogeochemical Processes in Antarctic Lakes. American Geophysical Union, Washington, DC.Google Scholar
  18. Jannasch, H. W.: 1985, Proc. R. Soc. Lond. B. 225, 277.Google Scholar
  19. Johnston, D. and Vestal, J. R. 1991, Appl. Envir. Microbiol. 57, 2308.Google Scholar
  20. Jørgensen, B. B.: 1989, in Y. Cohen and E. Rosenberg (eds.), Microbial Mats, Amer. Soc. Microbiol. Washington DC, pp. 123–128.Google Scholar
  21. Kepkay, P. and Nealson, K.: 1987, Arch. Microbiol. 148, 63.Google Scholar
  22. Klein, H. P.: 1976, Origins of Life 7, 273.PubMedGoogle Scholar
  23. Klein, H. P.: 1978, Icarus 34, 666.Google Scholar
  24. Klein, H. P.: 1979, Rev. Geophys. and Space Physics 17, 1655.Google Scholar
  25. Little, B., Wagner, P., Ray, R., Hart, K., Lavoie, D., Nealson, K. and Aguilar, C.: 1997, Corrosion 97 215, 1–11.Google Scholar
  26. Little, B., Wagner, P., Ray, R. Pope, R. and Scheetz, R.: 1991, J. Indus. Microbiol. 8, 213.Google Scholar
  27. Lovley, D. and Phillips, E. J.: 1988, Appl. Environ. Microbiol. 51, 683.Google Scholar
  28. Maidak, B. L., Larsen, N., McCaughey, M. J., Overbeek, R., Olsen, G., Fogel, K., Blandy, J. and Woese, C. R.: 1994, Nucl. Acids. Res. 22, 3485.PubMedGoogle Scholar
  29. Margulis, L.: 1981, Symbiosis in Cell Evolution. W. H. Freeman and Co., San Francisco.Google Scholar
  30. McKay, C. P., Friedman, E. I., Wharton, R. A. and Davies, W. L.: 1992, Adv. Space Res. 12, 231.Google Scholar
  31. Mojzsis, S., Arrhenius, G., McKeegan, K., Harrison, T., Nutman, A. and Friends, C.: 1996, Nature 384, 55.CrossRefPubMedGoogle Scholar
  32. Myers C. R. and Nealson, K. H.: 1988, Science 240, 1319.Google Scholar
  33. Nealson, K. H.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 2311–2320.Google Scholar
  34. Nealson, K. H.: 1997, Ann. Rev. Earth Plan. Sci., (in press).Google Scholar
  35. Nealson, K. H. and Saffarini, D. W.: 1994, Ann. Rev. Microbiol. 48, 311.Google Scholar
  36. Olson, G., Lane, D., Giovannoni, S. and Pace, N.: 1986, Ann. Rev. Microbiol. 40, 337.Google Scholar
  37. Olsen, G., Woese, C. and Overbeek, R.: 1994, J. Bacteriol. 176(1), 1.PubMedGoogle Scholar
  38. Pace, N., Angert, E., DeLong, E., Schmidt, T. and Wickham, G.: 1993, in R. H. Baltz, G. D. Hegeman, P. L. Skatrud (eds.), Industrial Microorganisms: Basic and Applied Molecular Genetics, Washington DC, Amer. Soc. Microbiol., pp. 77–84.Google Scholar
  39. Pace, N., Stahl, D., Lane, D. and Olsen, G.: 1986, in K. C. Marshall (ed.), Advances in Microbial Ecology, Plenum Press, pp. 1–55.Google Scholar
  40. Parkes, R., Cragg, B., Bale, S., Getliff, J., Goodman, K., Rochelle, P., Fry, J., Weightman, A. and Harvey, S.: 1994, Nature (London) 371, 410.Google Scholar
  41. Pierson, B. K., Sands, V. M. and Frederick, J. L.: 1990, Appl. Environ. Microbiol. 56, 2327.Google Scholar
  42. Raskin, L., Poulsen, L., Noguera, D., Rittmann, B. and Stahl, D.: 1994, Appl. Environ. Microbiol. 60, 1241.Google Scholar
  43. Revsbech, N. P., Christensen, P. B. and Nielsen, L. P.: 1989, in Y. Cohen and E. Rosenberg (eds.), Microbial Mats, Amer. Soc. Microbiol., Washington DC, pp. 155–162.Google Scholar
  44. Revsbech, N. P. and Jørgensen, B. B.: 1986, Adv. Microbial Ecol. 9, 293.Google Scholar
  45. Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H., and Cohen, Y.: 1983, Limnol. Oceanog. 28, 1062.Google Scholar
  46. Revsbech, N. P. and Ward, D. M.: 1984, Appl. Environ. Microbiol. 48, 270.Google Scholar
  47. Reysenback A.-L., Wickham, G. and Pace, N.: 1994, Appl. Environ. Microbiol. 60, 2113.PubMedGoogle Scholar
  48. Risatti, J., Capman, W. and Stahl, D.: 1994, Proc. Nat. Acad. Sci. USA 91, 10173.PubMedGoogle Scholar
  49. Schink, B.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 276–99.Google Scholar
  50. Schlegel, H. and Jannasch, H.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and H.-H. Schleifer (eds.), The Prokaryotes, Springer-Verlag, New York, pp. 75–125.Google Scholar
  51. Schmidt, T., DeLong, E. and Pace, N.: 1991, J. Bacteriol. 173, 4371.PubMedGoogle Scholar
  52. Schopf, J. W.: 1983, The Evolution of the Biosphere.Google Scholar
  53. Shock, E., McCollom, T. and Schulte, M.: 1995, Origin Life Evol. Biosphere 25, 141.Google Scholar
  54. Stevens, T. and McKinley, J.: 1995, Science 270, 450.Google Scholar
  55. Straub, K., Benz, M., Schink, B. and Widdel, F.: 1996, Appl. Env. Microbiol. 62, 1458.Google Scholar
  56. Tiedje, J.: 1994, Microbial diversity: of value to whom?, ASM News 60, 524.Google Scholar
  57. Widdel, F. and Hanson, T.: 1992, in A. Balows, H. G. Trueper, M. Dworkin, W. Harder and K. Schleifer (eds.), The Prokaryotes, New York, Springer-Verlag, pp. 583–624.Google Scholar
  58. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B.: 1993, Nature 362, 834.Google Scholar
  59. Woese, C. R.: 1987, Bacteriol. Rev. 51, 221.Google Scholar
  60. Woese, C. R.: 1994, Microbiol. Rev. 58, 1.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Kenneth H. Nealson
    • 1
  1. 1.Center for Great Lakes StudiesMilwaukeeU.S.A.

Personalised recommendations