Skip to main content
Log in

Thermo-Chemo-Electro-Mechanical Formulation of Saturated Charged Porous Solids

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A thermo-chemo-electro-mechanical formulation of quasi-static finite deformation of swelling incompressible porous media is derived from a mixture theory including the volume fraction concept. The model consists of an electrically charged porous solid saturated with an ionic solution. Incompressible deformation is assumed. The mixture as a whole is assumed locally electroneutral. Different constituents following different kinematic paths are defined: solid, fluid, anions, cations and neutral solutes. Balance laws are derived for each constituent and for the mixture as a whole. A Lagrangian form of the second law of thermodynamics for incompressible porous media is used to derive the constitutive restrictions of the medium. The material properties are shown to be contained in one strain energy function and a matrix of frictional tensors. A principle of reversibility results from the constitutive restrictions. Existing theories of swelling media should be evaluated with respect to this principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot, M. A.: General theory of three-dimensional consolidation, J. Appl. Phys. 12 (1941), 155-164.

    Google Scholar 

  2. Staverman, A. J.: Non-equilibrium thermodynamics of membrane processes, Trans. Faraday Soc. 48 (1952), 176-185.

    Google Scholar 

  3. Coleman, B. D. and Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal. 13 (1963), 167-178.

    Google Scholar 

  4. Biot, M.: Theory of finite deformation of porous solids, Indiana University Math. J. 21 (1972), 597-620.

    Google Scholar 

  5. Bowen, R. M.: Incompressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci. 18 (1980), 1129-1148.

    Google Scholar 

  6. Richards, E. G.: An Introduction to Physical Properties of Large Molecules in Solution, Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  7. Lai, W. M., Hou, J. S. and Mow, V. C.: A triphasic theory for the swelling and deformation behaviours of articular cartilage, J. Biomech. Engng. 113 (1991), 245-258.

    Google Scholar 

  8. Sherwood, J. D.: Biot poroelasticity of a chemically active shale, Proc. Roy. Soc. London A 440 (1993), 367-377.

    Google Scholar 

  9. Gu, W. Y., Lai, W. M. and Mow, V. C.: Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage, J. Biomech. 26 (1993), 709-723.

    Google Scholar 

  10. Snijders, H., Huyghe, J. M. and Janssen, J. D.: Triphasic finite element model for swelling porous media, Int. J. Num. Meth. Fluids 20 (1995), 1039-1046.

    Google Scholar 

  11. Grodzinsky, A. J., Roth, V., Meyers, E., Grossman, W. D. and Mow, V. C.: The significance of electromechanical and osmotic forces in the non-equilibrium swelling behaviour of articular cartilage in tension, J. Biomech. Engng. 103 (1981), 221-231.

    Google Scholar 

  12. Bluhm, J. and de Boer R.: Effective stresses-a clarification, Arch. Appl. Mech. 66 (1996), 479-492.

    Google Scholar 

  13. Drost, M. R., Willems P., Snijders, H., Huyghe, J. M., Janssen, J. D. and Huson, A.: Confined compression of canine annulus fibrosus under chemical and mechanical loading, J. Biomech. Engng. 117 (1995), 390-396.

    Google Scholar 

  14. Oomens, C. W. J., Heus, H. de, Huyghe, J. M., Nelissen, L. and Janssen, J. D.: Validation of the triphasic mixture theory for a mimic of intervertebral disk tissue, Biomimetics 3 (1994), 171-185.

    Google Scholar 

  15. Heidug, W. K. and Wong, S.-W.: Hydration swelling of water absorbing rocks: a constitutive model, Int. J. Num. Anal. Meth. Geomech. 20 (1996), 403-430.

    Google Scholar 

  16. Yeung, A. T. and Mitchell, J. K.: Coupled fluid, electrical and chemical flows in soil, Geotechnique 43 (1993), 121.

    Google Scholar 

  17. Oort, E. van, Hale, A. H., Mody, F. K. and Sanjit, R.: Critical parameters in modelling the chemical aspects of borehole stability in shales and in designing improved water-based shale drilling fluids, Society of Petroleum Engineers, paper 28309, presented at the SPE 69th Annual Technical Conference and Exhibition, New Orleans, La., September, 1994.

  18. Vankan, W. J., Huyghe, J. M., Janssen, J. D. and Huson, A.: Poroelasticity of saturated solids with an application to blood perfusion, Int. J. Engng. Sci. 34 (1996), 1019-1031.

    Google Scholar 

  19. Mueller, I.: Thermodynamics, Pitman, Boston, 1985.

    Google Scholar 

  20. Wilmansky, K.: Lagrangian model of two-phase porous material, J. Non-Equil. Thermodyn. 20 (1995), 50-77.

    Google Scholar 

  21. Woods, L. C.: Thermodynamic inequalities in continuum mechanics, IMA J. Appl. Math. 29 (1982), 221-246.

    Google Scholar 

  22. Simon, B. R., Liable, J. P., Pflaster, D., Yuan, Y. and Krag, M. H.: A poroelastic finite element formulation including transport and swelling in soft tissue structures, J. Biomech. Engng. 118 (1996), 1-9.

    Google Scholar 

  23. Huyghe, J. M. and Janssen, J. D.: Quadriphasic theory of swelling incompressible porous media, Int. J. Engng. Sci. 35 (1997), 793-802.

    Google Scholar 

  24. Frijns, A. J. H., Huyghe, J. M. and Janssen, J. D.: A validation of the quadriphasic mixture theory for intervertebral disc tissue, Int. J. Engng. Sci. 35 (1997), 1419-1429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huyghe, J., Janssen, J. Thermo-Chemo-Electro-Mechanical Formulation of Saturated Charged Porous Solids. Transport in Porous Media 34, 129–141 (1999). https://doi.org/10.1023/A:1006509424116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006509424116

Navigation