Skip to main content
Log in

Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Increasing evidence supports the idea that various transgene silencing phenomena reflect the activity of diverse host defense responses that act ordinarily on natural foreign or parasitic sequences such as transposable elements, viroids, RNA and DNA viruses, and bacterial DNA. Transgenes or their transcripts can resemble these cellular invaders in a number of ways, thus making them targets of host protective reactions. At least two distinct host defense systems operate to silence transgenes. One acts at the genome level and is associated with de novo DNA methylation. A second line of defense operates post-transcriptionally and involves sequence-specific RNA degradation in the cytoplasm. Transgenes that are silenced as a consequence of the genome defense are revealing that de novo methylation can be cued by DNA-DNA or RNA-DNA interactions. These methylation signals can be interpreted in the context of transposable elements or their transcripts. During evolution, as transposable elements accumulated in plant and vertebrate genomes and as they invaded flanking regions of genes, the genome defense was possibly recruited to establish global epigenetic mechanisms to regulate gene expression. Transposons integrated into promoters of host genes could conceivably change expression patterns and attract methylation, thus imposing on endogenous genes the type of epigenetic regulation associated with the genome defense. This recruitment process might have been particularly effective in the polyploid genomes of plants and early vertebrates. Duplication of the entire genome in polyploids buffers against insertional mutagenesis by transposable elements and permits their infiltration into individual copies of duplicated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Franke, U. and Zoghbi, H.Y. et al. 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23: 185–188.

    PubMed  Google Scholar 

  • Bender, J. 1998. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem. 23: 252–256.

    PubMed  Google Scholar 

  • Bender, J. and Fink, G.R. 1995. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83: 725–734.

    PubMed  Google Scholar 

  • Bennetzen, J.L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251–269.

    PubMed  Google Scholar 

  • Bestor, T.H., Laudano, A., Mattaliano, R. and Ingram, V. 1988. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J. Mol. Biol. 203: 971–983.

    PubMed  Google Scholar 

  • Bestor, T.H. 1990. DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Phil. Trans. R. Soc. Lond. B 326: 179–187.

    Google Scholar 

  • Bestor, T.H. and Tycko, B. 1996. Creation of genomic methylation patterns. Nature Genet. 12: 363–367.

    PubMed  Google Scholar 

  • Bird, A.P. and Wolffe, A.P. 1999. Methylation-induced repression: belts, braces, and chromatin. Cell 99: 451–454.

    PubMed  Google Scholar 

  • Bollman, J., Carpenter, R. and Coen, E.S. 1991. Allelic interactions at the nivea locus of Antirrhinum. Plant Cell 3: 1327–1336.

    Article  PubMed  Google Scholar 

  • Britten, R.J. 1996. DNA sequence insertion and evolutionary variation in gene regulation. Proc. Natl. Acad. Sci. USA 93: 9374–9377.

    PubMed  Google Scholar 

  • Britten, R.J. 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205: 177–182.

    PubMed  Google Scholar 

  • Bureau, T.E., Ronald, P.C. and Wessler, S.R. 1996. A computerbased systematic survey reveals the predominance of small inverted. repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. USA 93: 8524–8529.

    PubMed  Google Scholar 

  • Casacuberta, E., Casacuberta, J.M., Puigdomènech, P. and Monfort, A. 1998. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. Plant J. 16: 79–85.

    PubMed  Google Scholar 

  • Cogoni, C. and Macino, G. 1997a. Conservation of transgeneinduced post-transcriptional gene silencing in plants and fungi. Trends Plant Sci. 2: 438–443.

    Google Scholar 

  • Cogoni, C. and Macino, G. 1997b. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl. Acad. Sci. USA 94: 10233–10238.

    PubMed  Google Scholar 

  • Cogoni, C. and Macino, G. 1999a. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399: 166–169.

    PubMed  Google Scholar 

  • Cogoni, C. and Macino, G. 1999b. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286: 2342–2344.

    PubMed  Google Scholar 

  • Cogoni, C. and Macino, G. 1999c. Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme. Curr. Opin. Microbiol. 6: 657–662.

    Google Scholar 

  • Colot, V. and Rossignol, J.-L. 1999. Eukaryotic DNA methylation as an evolutionary device. BioEssays 15: 3153–3163.

    Google Scholar 

  • Colot, V., Maloisel, L. and Rossignol, J.-L. 1997. Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86: 855–864.

    Google Scholar 

  • Coppin-Raynal, E., Picard, M. and Arnaise, S. 1989. Transformation by integration in Podospora anserina. Mol. Gen. Genet. 219: 270–276.

    PubMed  Google Scholar 

  • Craig, N.L 1997. Target site selection in transposition. Annu. Rev. Biochem. 66: 437–474.

    PubMed  Google Scholar 

  • Ding, D. and Lipschutz, H.D. 1994. Spatially regulated expression of retrovirus-like transposons during Drosophila melanogaster embryogenesis. Genet. Res. Camb. 64: 167–181.

    Google Scholar 

  • Elmayan, T., Balzergue, S., Béon, F., Bourdon, V., Daubremet, J., Guénet, Y., Mourrain, P., Palauqui, J.-C., Vernhettes, S., Vialle, T., Wostrikoff, K. and Vaucheret, H. 1998. Arabidopsis mutants impaired in cosuppression. Plant Cell 10: 1747–1757.

    PubMed  Google Scholar 

  • Finnegan, E.J., Genger, R.K., Peacock, W.J. and Dennis, E.S. 1998. DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 223-248. Fire, A. 1999. RNA-triggered gene silencing. Trends Genet. 15: 358–363.

    Google Scholar 

  • Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L. and Kouzarides. 2000. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet. 24: 88–91.

    PubMed  Google Scholar 

  • Genger, R.K., Kovac, K.A., Dennis, E.S., Peacock, W.J. and Finnegan, E.J. 1999. Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol. Biol. 41: 269–278.

    PubMed  Google Scholar 

  • Girard, L. and Freeling, M. 1999. Regulatory changes as a consequence of transposon insertion. Dev. Genet. 25: 291–296.

    PubMed  Google Scholar 

  • Gonzalgo, M.L. and Jones, P.A. 1997. Mutagenic and epigenetic effects of DNA methylation. Mut. Res. 386: 107–118.

    Google Scholar 

  • Hamilton, A.J., Brown, S., Yuanhai, H., Ishizuka, M., Lowe, A., Alpuche Solis, A. and Grierson, D. 1998. A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J. 15: 737–746.

    Google Scholar 

  • Hansen, R.S., Wijmenga, C., Luo, P., Stanek, A.M., Canfield, T.K., Weemaes, C.M.R. and Gartler, S.M. 1999. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA 96: 14412–14417.

    PubMed  Google Scholar 

  • Hendrich, B., Hardeland, U., Ng, H.-H., Jiricny, J. and Bird, A. 1999. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401: 301–304.

    PubMed  Google Scholar 

  • Henikoff, S. and Comai, L. 1998. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149: 307–318.

    PubMed  Google Scholar 

  • Holland, P.W.H. 1999. The future of evolutionary developmental biology. Nature 402: C41–C44.

    PubMed  Google Scholar 

  • Holliday, R. and Pugh, J.E. 1975. DNA modification mechanisms and gene activity during development. Science 187: 226–232.

    PubMed  Google Scholar 

  • Huang, M.-S., Karthikeyan, N., Huang, B., Koo, H.-C., Kiger, J. and Shen, C.-K. 1999. Drosophila proteins related to vertebrate DNA (5–cytosine) methyltransferases. Proc. Natl. Acad. Sci. USA 96: 11940–11945.

    PubMed  Google Scholar 

  • Iglesias, V.A., Moscone, E.A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., Spiker, S., Matzke, M. and Matzke, A.J.M. 1997. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251–1264.

    PubMed  Google Scholar 

  • Jacobsen, S.E. and Meyerowitz, E.M. 1997. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277: 1100–1103.

    PubMed  Google Scholar 

  • Jakowitsch, J., Papp, I., Matzke, M.A. and Matzke, A.J.M. 1998. Identification of a new family of highly repetitive DNA, NTS9, that is located predominantly on the S9 chromosome of tobacco. Chrom. Res. 6: 649–659.

    PubMed  Google Scholar 

  • Jakowitsch, J., Mette, M.F., van der Winden, J., Matzke, M.A. and Matzke, A.J.M. 1999a. Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proc. Natl. Acad. Sci. USA 96: 13241–13246.

    PubMed  Google Scholar 

  • Jakowitsch, J., Papp, I., Moscone, E.A., van der Winden, J., Matzke, M. and Matzke, A.J.M. 1999b. Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J. 17: 131–140.

    PubMed  Google Scholar 

  • Jeddeloh, J.A., Stokes, T.L. and Richards, E.J. 1999. Maintenance of genomic methylation requires a SWI2/SNF2–like protein. Nature Genet. 21: 209–212.

    PubMed  Google Scholar 

  • Jensen, S., Gassama, M.-P. and Heidmann, T. 1999. Cosuppression of I transposon activity by I-containing sense and antisense transgenes. Genetics 153: 1767–1774.

    PubMed  Google Scholar 

  • Jones, A.L., Thomas, C.L. and Maule, A.J. 1998. De novo methylation and cosuppression induced by a cytoplasmically replicating plant RNA virus. EMBO J. 17: 6385–6393.

    PubMed  Google Scholar 

  • Jones, L., Hamilton, A.J., Voinnet, O., Thomas, C.L., Maule, A.J. and Baulcombe, D.C. 1999. RNA-DNA interaction and DNA methylation in post-transcriptional gene silencing. Plant Cell 11: 2291–2301.

    PubMed  Google Scholar 

  • Jones, P., Veenstra, G., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., Strouboulis, J. and Wolffe, A.P. 1998. Methylated DNA and MeCP2 recruit histone deacetylases to repress transcription. Nature Genet. 19: 187–191.

    PubMed  Google Scholar 

  • Jurka, J. 1998. Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol. 8: 333–337.

    PubMed  Google Scholar 

  • Ketting, R.F., Haverkamp, T.H., van Luenen, H.G. and Plasterk, R.H. 1999. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNase D. Cell 99: 133–141.

    PubMed  Google Scholar 

  • Kidwell, M. and Lisch, D. 1997. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94: 7704–7711.

    PubMed  Google Scholar 

  • Kiefer, M.C., Owens, R.A. and Diener, T.O. 1983. Structural similarities between viroids and transposable genetic elements. Proc. Natl. Acad. Sci. USA 80: 6234–6238.

    PubMed  Google Scholar 

  • Kooter, J., Matzke, M.A. and Meyer, P. 1999. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4: 340–347.

    PubMed  Google Scholar 

  • Leitch, I.J. and Bennett, M.D. 1997. Polyploidy in angiosperms. Trends Plant Sci. 2: 470–476.

    Google Scholar 

  • Li, E., Bestor, T.H. and Jaenisch, R. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.

    PubMed  Google Scholar 

  • Luff, B., Pawlowski, L. and Bender, J. 1999. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3: 505–511.

    Article  PubMed  Google Scholar 

  • Lyko, F., Ramsahoye, B.H., Kaxhevsky, H., Tudor, M., Mastrangelo, M.-A., Orr-Weaver, T.L. and Jaenisch, R. 1999. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nature Genet. 23: 363–366.

    PubMed  Google Scholar 

  • Malagnac, F., Wendel, F., Goyon, C., Faugeron, G., Zickler, D., Rossignol, J.-L., Noyer-Weldner, M., Trautner, T. and Walter, J. 1997. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91: 1–20.

    PubMed  Google Scholar 

  • Martienssen, R. 1996. Epigenetic phenomena: paramutation and gene silencing in plants. Curr. Biol. 6: 810–813.

    PubMed  Google Scholar 

  • Masterson, J. 1994. Stomatal size in fossil plants: evidence for polyploidy in the majority of angiosperms. Science 264: 421–424.

    Google Scholar 

  • Matzke, A.J.M. and Matzke, M.A. 1998. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1: 142–148.

    PubMed  Google Scholar 

  • Matzke, A.J.M., Varga, F., Gruendler, P., Unfried, I., Berger, H., Mayr, B. and Matzke, M.A. 1992. Characterization of a new repetitive sequence that is enriched on microchromosomes of turkey. Chromosoma 102: 9–14.

    PubMed  Google Scholar 

  • Matzke, M.A., Matzke, A.J.M. and Eggleston, W. 1996. Transgene silencing and paramutation: a common response to invasive DNA? Trends Plant Sci. 1: 382–388.

    Google Scholar 

  • Matzke, M.A., Mette, M.F., Kunz, C., Jakowitsch, J. and Matzke, A.J.M. 2000a. Homology-dependent gene silencing in transgenic plants: links to cellular defense responses and genome evolution. In: J.P. Gustafson (Ed.) Stadler Genetics Symposium, Plenum, New York, in press.

    Google Scholar 

  • Matzke, M.A., Mette. M.F., Aufsatz, W., Jakowitsch, J. and Matzke, A.J.M. 2000b. Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms. In: J.F. McDonald (Ed.) Transposable Elements and Evolution, Kluwer Academic Publishers, Dordrecht, Netherlands, in press.

    Google Scholar 

  • McDonald, J.F. 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.

    Google Scholar 

  • McDonald, J.F. 1995. Transposable elements: possible catalysts of organismic evolution. Trends Ecol Evol. 10: 123–126.

    Google Scholar 

  • Melquist, S., Luff, B. and Bender, J. 1999. Arabidopsis PAI gene rearrangements, cytosine methylation and expression. Genetics 153: 401–413.

    PubMed  Google Scholar 

  • Mette, M.F., van der Winden, J., Matzke, M.A. and Matzke, A.J.M. 1999. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 18: 241–248.

    PubMed  Google Scholar 

  • Meyer, A. and Schartl, M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11: 699–704.

    PubMed  Google Scholar 

  • Mittelsten Scheid, O., Afsar, K. and Paszkowski, J. 1998. Release of epigenetic silencing by trans-acting mutations in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 632–637.

    PubMed  Google Scholar 

  • Nan, X., Ng, H.-H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. and Bird, A. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    PubMed  Google Scholar 

  • Ng, H.-H., Zhang, Y., Hendrich, B., Johnson, C.A., Turner, B.M., Erdjument-Bromage, H., Tempst, P., Reinberg, D. and Bird, A. 1999. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet. 23: 58–61.

    PubMed  Google Scholar 

  • Okano, M., Bell, D.W., Haber, D.A. and Li, E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.

    PubMed  Google Scholar 

  • Papp, I., Iglesias, V.A., Moscone, E.A., Michalowski, S., Spiker, S., Park, Y.-D., Matzke, M.A. and Matzke, A.J.M. 1996. Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J. 10: 469–478.

    PubMed  Google Scholar 

  • Pélissier, T., Tutois, S., Deragon, J.M., Tourmente, S., Genestier, S. and Picard, G. 1995. Athila, a new retroelement from Arabidopsis thaliana. Plant Mol. Biol. 29: 441–452.

    PubMed  Google Scholar 

  • Pélissier, T., Thalmeir, S., Kempe, D., Sänger, H.-L. and Wassenegger, M. 1999. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucl. Acids Res. 27: 1625–1634.

    PubMed  Google Scholar 

  • Pélissier, T. and Wassenegger, M. 2000. A DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA 6: 55–65.

    PubMed  Google Scholar 

  • Pinarbasi, E., Elliot, J. and Hornby, D.P. 1996. Activation of a yeast pseudo DNA methyltransferase by deletion of a single amino acid. J. Mol. Biol. 257: 804–813.

    PubMed  Google Scholar 

  • Pröls, F. and Meyer, P. 1992. The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J. 2: 465–475.

    PubMed  Google Scholar 

  • Regev, A., Lamb, M. and Jablonka, E. 1998. The role of DNA methylation in invertebrates: developmental regulation of genome defense? Mol. Biol. Evol. 15: 880–891.

    Google Scholar 

  • Richards, E. 1997. DNA methylation and plant development. Trends Genet. 13: 319–322.

    PubMed  Google Scholar 

  • Riggs, A.D. 1975. X chromosome inactivation, differentiation and DNA methylation. Cytogenet. Cell Genet. 14: 9–25.

    PubMed  Google Scholar 

  • Rossignol, J.-L. and Faugeron, G. 1994. Gene inactivation triggered by recognition between DNA repeats. Experientia 50: 307–317.

    PubMed  Google Scholar 

  • Sandmeyer, S.B., Hansen, L.J. and Chalker, D.L. 1990. Integration specificity of retrotransposons and retroviruses. Annu. Rev. Genet. 24: 491–518.

    PubMed  Google Scholar 

  • SanMiguel, P. Tikhonov, A., Jin, Y., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z. and Bennetzen, J.L. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    PubMed  Google Scholar 

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. and Bennetzen, J.L. 1998. The paleontology of intergene retrotransposons of maize. Nature Genet. 20: 43–45.

    PubMed  Google Scholar 

  • Scrable, H. and Stambrook, P.J. 1997. Activation of the lac repressor in the transgenic mouse. Genetics 147: 297–304.

    PubMed  Google Scholar 

  • Scrable, H. and Stambrook, P.J. 1999. A genetic program for deletion of foreign DNA from the mammalian genome. Mut. Res. 429: 225–237.

    Google Scholar 

  • Selker, E.U. 1990. Premeiotic instability of repeated sequences in Neurospora. Annu. Rev. Genet. 24: 579–614.

    PubMed  Google Scholar 

  • Selker, E.U. 1997. Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet. 13: 296–310.

    PubMed  Google Scholar 

  • Selker, E.U. 1999. Repeats that count. Cell 97: 157–160.

    PubMed  Google Scholar 

  • Shimeld, S.M. 1999. Gene function, gene networks and the fate of duplicated genes. Sem. Cell Dev. Biol. 10: 549–553.

    Google Scholar 

  • Singer, M., Marcotte, B. and Selker, E.U. 1995. DNA methylation associated with repeat-induced point mutation in Neurospora crassa. Mol. Cell Biol. 15: 5586–5597.

    PubMed  Google Scholar 

  • Smit, A.F. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9: 657–663.

    PubMed  Google Scholar 

  • Soltis, D.E. and Soltis, P.S. 1999. Polyploidy: recurrent formation and genome evolution. Trends Ecol. Evol 14: 348–352.

    PubMed  Google Scholar 

  • Spring, J. 1997. Vertebrate evolution by interspecific hybridization: are we polyploid? FEBS Lett. 400: 2–8.

    PubMed  Google Scholar 

  • Stam, M., Viterbo, A., Mol, J.N.M. and Kooter, J.M. 1998. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol. Cell Biol. 18: 6165–6177.

    PubMed  Google Scholar 

  • Tabara, H., Sarkissian, M., Kelly, W.G., Fleenor, J., Grishok, A., Timmons, L., Fire, A. and Mello, C.C. 1999. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99: 123–132.

    PubMed  Google Scholar 

  • ten Lohuis, M., Müller, A., Heidmann, I., Niedenhof, I. and Meyer, P. 1995. A repetitive DNA fragment carrying a hot spot for de novo DNA methylation enhances expression variegation in tobacco and petunia. Plant J. 8: 919–932.

    PubMed  Google Scholar 

  • Turker, M.S. and Bestor, T.H. 1997. Formation of methylation patterns in the mammalian genome. Mut. Res. 386: 119–130.

    Google Scholar 

  • Tweedie, S., Ng, H.-H., Barlow, A.L., Turner, B.M., Hendrich, B. and Bird, A. 1999. Vestiges of a DNA methylation system in Drosophila melanogaster? Nature Genet. 23: 389–390.

    PubMed  Google Scholar 

  • VanderWiel, P. Voytas, D.F. and Wendel, J.F. 1993. Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J. Mol. Evol. 36: 429–447.

    PubMed  Google Scholar 

  • Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Gordon, C., Morel, J.-B., Mourrain, P., Palauqui, J.-C. and Vernhettes, S. 1998. Transgene-induced gene silencing in plants. Plant J. 16: 651–659.

    PubMed  Google Scholar 

  • Wade, P.A., Gegonne, A., Jones, P.L., Ballestar, E., Aubry, F. and Wolffe, A.P. 1999. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet. 23: 62–66.

    PubMed  Google Scholar 

  • Waldman, A.S., Tran, H., Goldsmith, E.C. and Resnick, M.A. 1999. Long inverted repeats are an at-risk motif for recombination in mammalian cells. Genetics 153: 1873–1883.

    PubMed  Google Scholar 

  • Walsh, C.P. and Bestor, T.H. 1999. Cytosine methylation and mammalian development. Genes Devel. 13: 26–34.

    PubMed  Google Scholar 

  • Wassenegger, M., Himes, S., Riedel, L. and Sänger, H. 1994. RNAdirected de novo methylation of genomic sequences in plants. Cell 76: 567–576.

    PubMed  Google Scholar 

  • Waterhouse, P.M., Graham, H.W. and Wang, M.B. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95: 13959–13964.

    PubMed  Google Scholar 

  • Waterhouse, P.M., Smith, N.A. and Wang, M.-B. 1999. Virus resistance and gene silencing: killing the messenger. Trends Plant Sci. 4: 452–457.

    PubMed  Google Scholar 

  • Wenck, A., Czakó, M., Kanevski, I. and Márton, L. 1997. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol. Biol. 43: 913–922.

    Google Scholar 

  • Wendel, J.F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42: 225–249.

    Article  PubMed  Google Scholar 

  • Wessler, S. 1998. Transposable elements associated with normal plant genes. Physiol. Plant. 103: 581–586.

    Google Scholar 

  • White, S.E., Habera, L.F. and Wessler, S.R. 1994. Retrotranspsons in the flanking regions of normal plant genes: a role for copialike elements in the evoution of gene structure and expression. Proc. Natl. Acad. Sci. USA 91: 11792–11796.

    PubMed  Google Scholar 

  • Wilkinson, C.R., Bartlett, R., Nurse, P. and Bird, A.P. 1995. The fission yeast gene pmt1 encodes a DNA methyltransferase homolog. Nucl. Acids Res. 23: 203–210.

    PubMed  Google Scholar 

  • Wolffe, A.P. and Matzke, M.A. 1999. Epigenetics: regulation through repression. Science 286: 481–486.

    PubMed  Google Scholar 

  • Xu, G.-L-. Bestor, T.H., Bourc'his, D., Hsieh, C.-L., Tommerup, N., Bugge, M., Hulten, M., Qu, X., Russo, J.J. and Viegas-Péquignot, E. 1999. Chromosome instability and immunodeficienty syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191.

    PubMed  Google Scholar 

  • Yoder, J.A. and Bestor, T.H. 1998. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum. Mol. Genet. 7: 279–284.

    PubMed  Google Scholar 

  • Yoder, J.A., Walsh, C. and Bestor, T.H. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335–339.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzke, M., Mette, M. & Matzke, A. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 43, 401–415 (2000). https://doi.org/10.1023/A:1006484806925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006484806925

Navigation