Skip to main content
Log in

Transcriptional transgene silencing and chromatin components

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Contrary to simplistic views that have long prevailed in genetics textbooks, gene transcription in higher organisms cannot be fully understood by analysing binding of transcription factors to DNA target sites within the promoter regions, just as it would be inappropriate to picture the genetic information within a nucleus as a simple string of DNA. Instead, DNA is embedded in a highly complex chromatin structure that controls the location and accessibility of individual genetic regions in a way we are still far from understanding in detail. What has become obvious, mainly due to ground-breaking research in yeast and animal systems, is that the packaging of certain genes into a chromosomal matrix is regulated via sophisticated chromatin remodelling mechanisms that define whether and when a gene becomes accessible to the transcription machinery. In plants, especially the analysis of transgenes and transposable elements has reminded us of the presence of epigenetic control mechanisms, which can affect the reliable expression of transgenes. There is increasing evidence that chromatin components play an important part in plant epigenetics. The purpose of this review is to describe the main general principles of chromatin remodelling as they have been elucidated in non-plant systems and to discuss their relevance for the control of gene expression in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alland, L., Muhle, R., Hou, H., Jr., Potes, J., Chin, L., Schreiber-Agus, N. and DePinho, R. A. 1997. Role for N-CoR and histone deacetylase in Sin3–mediated transcriptional repression. Nature 387: 49–55.

    PubMed  Google Scholar 

  • Ammerpohl, O., Schmitz, A., Steinmuller, L. and Renkawitz, R. 1998. Repression of the mouse M-lysozyme gene involves both hindrance of enhancer factor binding to the methylated enhancer and histone deacetylation. Nucl. Acids Res. 26: 5256–5260.

    PubMed  Google Scholar 

  • Ayer, D.E., Kretzner, L. and Eisenman, R.N. 1993. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72: 211–222.

    PubMed  Google Scholar 

  • Ayer, D.E., Lawrence, Q.A. and Eisenman, R.N. 1994. Mad-Max transcription repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 777–786.

    Google Scholar 

  • Belyaev, N.D., Houben, A., Baranczewski, P. and Schubert, I. 1998. The acetylation patterns of histones H3 and H4 along Vicia faba chromosomes are different. Chromosome Res. 6: 59–63.

    PubMed  Google Scholar 

  • Bianchi, M.W. and Viotti, A. 1988. DNA methylation and tissuespecific transcription of the storage protein genes of maize. Plant Mol. Biol. 11: 203–214.

    Google Scholar 

  • Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y. and Allis, C.D. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5 linking histone acetylation to gene activation. Cell 84: 843–851.

    Article  PubMed  Google Scholar 

  • Buchman, A.R., Kimmerly, W.J., Rine, J. and Kornberg, R.D. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 210–225.

    PubMed  Google Scholar 

  • Burley, S.K. and Roeder, R.G. 1996. Biochemistry and structural biology of transcription factor IID. Annu. Rev. Biochem. 65: 769–799.

    PubMed  Google Scholar 

  • Cairns, B.R. 1998. Chromatin remodelling machines: similar motors, ulterior motives. Trends Biochem. Sci. 23: 20–25.

    PubMed  Google Scholar 

  • Chen, H., Lin, R.J., Schiltz, R.L., Chakravarti, D., Nash, A., Nagy, L., Privaisky, M.L., Nakatani, Y. and Evans, R.M. 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569–580.

    PubMed  Google Scholar 

  • Chen, Z.J. and Pikaard, C.S. 1997. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11: 2124–2136.

    PubMed  Google Scholar 

  • Csink, A.K. and Henikoff, S. 1996. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381: 529–531.

    PubMed  Google Scholar 

  • Csink, A.K. and Henikoff, S. 1998. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 14: 200–204.

    PubMed  Google Scholar 

  • DeVit, M.J., Waddle, J.A. and Johnston, M. 1997. Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8: 1603–1618.

    PubMed  Google Scholar 

  • Diffley, J.F. and Stillmann, B. 1989. Transcriptional silencing and lamins. Nature 342: 24.

    Google Scholar 

  • Dreesen, T.D., Henikoff, S. and Loughney, K. 1991. A pairingsensitive element that mediates trans-inactivation is associated with the Drosophila brown gene. Genes Dev. 5: 331–340.

    PubMed  Google Scholar 

  • Eden, S., Hashimshony, T., Keshet, I., Cedar, H. and Thorne, A.W. 1998. DNA methylation models histone acetylation [letter]. Nature 394: 842.

    PubMed  Google Scholar 

  • Edmondson, D.G., Smith, M.M. and Roth, S.Y. 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10: 1247–1259.

    PubMed  Google Scholar 

  • Fatamura, M., Monden, Y., Okabe, T., Fujita-Yoshigaki, J., Yokoyama, S. and Nishimura, S. 1995. Trichostatin A inhibits both ras-induced neurite outgrowth of PC12 cells and morphological transformation of N1H3T3 cells. Oncogene 10: 1119–1123.

    PubMed  Google Scholar 

  • Gatti, M. and Pimpinelli, S. 1992. Functional elements in Drosophila melanogaster heterochromation. Annu. Rev. Genet. 26: 239–275.

    PubMed  Google Scholar 

  • Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M. and Coupland, G. 1997. A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386: 44–51.

    PubMed  Google Scholar 

  • Grossniklaus, U., VielleCalzada, J.P., Hoeppner, M.A. and Gagliano, W.B. 1998. Maternal control of embryogenesis by medea, a Polycomb group gene in Arabidopsis. Science 280: 446–450.

    PubMed  Google Scholar 

  • Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S.M. and Grunstein, M. 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592.

    PubMed  Google Scholar 

  • Heinzel, T., Lavinsky, R.M., Mullen, T.M., Soderstrom, M., Laherty, C.D., Torchia, J., Yang, W.M., Brard, G., Ngo, S.D., Davie, J.R., Seto, E., Eisenman, R.N., Rose, D.W., Glass, C.K. and Rosenfeld, M.G. 1997. A complex containing NCoR, mSin3 and histone deacetylase mediates transcriptional repression [see comments]. Nature 387: 43–48.

    PubMed  Google Scholar 

  • Henikoff, S. and Comai, L. 1998. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in arabidopsis [in process citation]. Genetics 149: 307–318.

    PubMed  Google Scholar 

  • Herschbach, B.M., Arnaud, M.B. and Johnson, A.D. 1994. Transcriptional repression directed by the yeast alpha 2 protein in vitro. Nature 370: 309–311.

    PubMed  Google Scholar 

  • Hoffmann, A., Chiang, C.-M., Oelschlager, T., Xie, X., Burley, S.K., Nakatani, Y. and Roeder, R.G. 1996. A histone octamer-like structure within TFIID. Nature 380: 356–359.

    Article  PubMed  Google Scholar 

  • Houben, A., Belyaev, N.D., Turner, B.M. and Schubert, I. 1996. Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Res. 4: 191–194.

    PubMed  Google Scholar 

  • Howe, M., Dimitri, P., Berloco, M. and Wakimoto, B.T. 1995. Ciseffects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics 140: 1033–1045.

    PubMed  Google Scholar 

  • Imbalzano, A.N., Kwon, H., Green, M.R. and Kingston, R.E. 1994. Facilitated binding of a TATA-binding protein to nucleosomal DNA. Nature 370: 481–485.

    PubMed  Google Scholar 

  • Ingram, R., Charrier, B., Scollan, C. and Meyer, P. 1999. Transgenic tobacco plants expressing the Drosophila Polycomb (Pc) chromodomain show developmental alterations: possible role of Pc chromodomain proteins in chromatin-mediated gene regulation in plants. Plant Cell 11: 1047–1060.

    PubMed  Google Scholar 

  • Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. and Kadonaga, J.T. 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90: 145–155.

    PubMed  Google Scholar 

  • Izban, M.G. and Luse, D.S. 1992. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267: 13647–13655.

    PubMed  Google Scholar 

  • Jeddeloh, J.A., Bender, J. and Richards, E.J. 1998. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Gene Dev. 12: 1714–1725.

    PubMed  Google Scholar 

  • Jeddeloh, J.A., Stokes, T.L. and Richards, E.J. 1999. Maintenance of genomic methylation requires a SWI2/SNF2–like protein. Nature Genet. 22: 94–96.

    PubMed  Google Scholar 

  • Kass, S.U., Pruss, D. and Wolffe, A.P. 1997. How does DNA methylation repress transcription? Trends Genet. 13: 444–449.

    PubMed  Google Scholar 

  • Kaufman, P.D., Kobayashi, R., Kessler, N. and Stillman, B. 1995. The p150 and p60 subunits of chromatin assembly factor 1: a molecular link between newly synthesised histones and DNA replication. Cell 81: 1105–1114.

    PubMed  Google Scholar 

  • Keleher, C.A., Redd, M.J., Schultz, M., Carlson, M. and Johnson, A. D. 1992. SSN6–TUP1 is a general repressor of trancription in yeast. Cell 68: 709–719.

    PubMed  Google Scholar 

  • Kellum, R. and Alberts, B.M. 1995. Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J. Cell Sci. 108: 1419–1431.

    PubMed  Google Scholar 

  • Kellum, R., Raff, J.W. and Alberts, B.M. 1995. Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos. J. Cell Sci. 108: 1407–1418.

    PubMed  Google Scholar 

  • Keshet, I., Lieman-Hurwitz, J. and Cedar, H. 1986. DNA methylation affects the formation of active chromatin. Cell 44: 535–543.

    Article  PubMed  Google Scholar 

  • Kingston, R.E., Bunker, C.A. and Imbalzano, A.N. 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10: 905–920.

    PubMed  Google Scholar 

  • Kolle, D., Brosch, G., Lechner, T., Pipal, A., Helliger, W., Taplick, J. and Loidl, P. 1999. Different types of maize histone deacetylases are distinguished by a highly complex substrate and site specificity. Biochemistry 38: 6769–6773.

    PubMed  Google Scholar 

  • Kouzarides, T. 1999. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9: 40–48.

    PubMed  Google Scholar 

  • Laherty, C.D., Yang, W.-M., Sun, J.-M., Davie, J.R., Seto, E. and Eisenmann, R.N. 1997. Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89: 349–356.

    PubMed  Google Scholar 

  • Lewis, E.B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.

    PubMed  Google Scholar 

  • Lewis, J.D., Meehan, R.R., Henzel, W.J., Maurer-Fogy, I., Jeppesen, P., Klein, F. and Bird, A. 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914.

    PubMed  Google Scholar 

  • Li, G.F., Bishop, K.J., Chandrasekharan, M.B. and Hall, T.C. 1999. Beta-phaseolin gene activation is a two-step process: PvALF-facilitated chromatin modification followed by abscisic acid-mediated gene activation. Proc. Natl. Acad. Sci. USA 96: 7104–7109.

    PubMed  Google Scholar 

  • Li, G.F., Chandler, S.P., Wolffe, A.P. and Hall, T.C. 1998. Architectural specificity in chromatin structure at the TATA box in vivo: nucleosome displacement upon β-phaseolin gene activation. Proc. Natl. Acad. Sci. USA 95: 4772–4777.

    PubMed  Google Scholar 

  • Locke, J., Kotarski, A. and Tartof, K.D. 1988. Dosage-dependent modifiers of position effect variegation in Drosophila and mass action model that explains their effect. Genetics 120: 181–198.

    PubMed  Google Scholar 

  • Loidl, P. 1998. Histone acetylation: new facts - old questions. In: T.C. Hall, A.P. Wolffe, R.J. Ferl and M.A. Vega-Palas (Eds.) Chromatin and DNA Modification: Plant Gene Expression and Silencing, Instituto Juan March de Estudios e Investigaciones, Madrid, pp. 14–15.

    Google Scholar 

  • Luger, K., Maeder, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. 1997. Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389: 251–260.

    PubMed  Google Scholar 

  • Lusser, A., Brosch, G., Loidl, A., Haas, H. and Loid, P. 1997. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 277: 88–91.

    PubMed  Google Scholar 

  • Lusser, A., Brosch, G., Lopez Rodas, G. and Loidl, P. 1997. Histone acetyltransferases during the cell cycle and differentiation of Physarum polycephalum. Eur. J. Cell Biol. 74: 102–110.

    PubMed  Google Scholar 

  • Matallana, E., Franco, L. and Perez-Ortin, J.E. 1992. Chromatin structure of the yeast SUC2 promoter in regulatory mutants.Mol. Gen. Genet. 231: 395–400.

    PubMed  Google Scholar 

  • Meisterernst, M., Horikoshi, M. and Roeder, R.G. 1990. Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay. Proc. Natl. Acad. Sci. USA 87: 9153–9157.

    PubMed  Google Scholar 

  • Michailidis, J., Murray, N.D. and Graves, J.A.M. 1988. A correlation between development time and variegated position effect in Drosophila melanogaster. Genet. Res. 52: 119–123.

    Google Scholar 

  • Moore, G.D., Sinclair, D.A. and Grigliatti, T.A. 1983. Histone gene multiplicity and position effect variegation in D. melanogaster. Genetics 105: 327–344.

    Google Scholar 

  • Moran, E. 1993. DNA tumour virus transforming proteins and the cell cycle. Curr. Opin. Genet. Dev. 3: 63–70.

    PubMed  Google Scholar 

  • Mottus, R., Reeves, R. and Grigliatti, T.A. 1980. Butyrate suppression of position-effect variegation in Drosophila melanogaster. Mol. Gen. Genet. 178: 465–469.

    PubMed  Google Scholar 

  • Nan, X.S., Campoy, F.J. and Bird, A. 1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471–481.

    Article  PubMed  Google Scholar 

  • Nan, X.S., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. and Bird, A. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    PubMed  Google Scholar 

  • Ng, H.H. and Bird, A. 1999. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9: 158–163.

    PubMed  Google Scholar 

  • Oelschlager, T., Chiang, C.-M. and Roeder, R.G. 1996. Topology and reorganisation of a human TFIID-promoter complex. Nature 382: 735–738.

    PubMed  Google Scholar 

  • Ogryzko, W., Schiltz, R.L., Rusanova, V., Howard, B.H. and Nakatani, Y. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.

    PubMed  Google Scholar 

  • Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B. and Fischer, R.L. 1999. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11: 407–415.

    PubMed  Google Scholar 

  • Paro, R. 1993. Mechanisms of heritable gene repression during development of Drosophila. Curr. Opin. Cell Biol. 5: 999–1005.

    PubMed  Google Scholar 

  • Paro, R. and Hogness, D. 1991. The polycomb protein shares a homologous domain with a heterochromatin-associated protein in Drosophila. Proc. Natl. Acad. Sci. USA 88: 263–267.

    PubMed  Google Scholar 

  • Pazin, M.J. and Kadonaga, J.T. 1997. What's up and down with histone deacetylation and transcription? Cell 89: 325–328.

    PubMed  Google Scholar 

  • Peterson, C.L. and Tamkun, J.W. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20: 143–146.

    PubMed  Google Scholar 

  • Pikaart, M.I., RecillasTarga, F. and Felsenfeld, G. 1998. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12: 2852–2862.

    PubMed  Google Scholar 

  • Platero, J.S., Csink, A.K., Quintanilla, A. and Henikoff, S. 1998. Changes in chromosomal localization of heterochromatinbinding proteins during the cell cycle in Drosophila. J. Cell Biol. 140: 1297–1306.

    PubMed  Google Scholar 

  • Pollard, K.J. and Peterson, C.L. 1997. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol. Cell. Biol. 17: 6212–6222.

    PubMed  Google Scholar 

  • Reuter, G. and Spierer, P. 1992. Position-effect variegation and chromatin proteins. BioEssays 14: 605–612.

    PubMed  Google Scholar 

  • Roth, S.Y. 1995. Chromatin-mediated transcriptional repression in yeast. Curr. Opin. Gen. Dev. 5: 168–173.

    Google Scholar 

  • Satchwell, S., Drew, H. and Travers, A. 1986. Sequence periodicities in chicken nucleosomal DNA. J. Mol. Biol. 191: 659–679.

    PubMed  Google Scholar 

  • Schmid, A., Fascher, K.-D. and Horz, W. 1992. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication. Cell 71: 853–864.

    PubMed  Google Scholar 

  • Selker, E.U. 1998. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl. Acad. Sci. USA 95: 9430–9435.

    PubMed  Google Scholar 

  • Spofford, J.B. 1976. Position-effect variegation in Drosophila. In: Genetics and Biology of Drosophila, Academic Press, London, pp. 955–1019.

    Google Scholar 

  • Studitsky, V.M., Clark, D.J. and Felsenfeld, G. 1994. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76: 371–382.

    PubMed  Google Scholar 

  • Svaren, J. and Horz, W. 1997. Transcription factors vs nucleosomes: Regulation of the PH05 promoter in yeast. Trends Biochem. Sci. 22: 93–97.

    PubMed  Google Scholar 

  • Tauton, J., Hassig, C.A. and Schreiber, S.L. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411.

    PubMed  Google Scholar 

  • Tazi, J. and A., B. 1990. Alternative chromatin structure at CpG islands. Cell 60: 909–920.

    PubMed  Google Scholar 

  • Thompson, J.S., Hecht, A. and Grunstein, M. 1993. Histones and the regulation of heterochromatin in yeast. Cold Spring Harbor Symp. Quant. Biol. 58: 247–256.

    PubMed  Google Scholar 

  • Torchia, J., Rose, D.W., Inostroza, J., Kamei, Y., Westin, S., Glass, C.K. and Rosenfeld, M.G. 1997. The transcriptional co-activator p/CIP binds CBP and mediated nuclear-receptor function. Nature 387: 677–684.

    Article  PubMed  Google Scholar 

  • Travers, A. 1999. An engine for nucleosome remodeling. Cell 96: 311–314.

    PubMed  Google Scholar 

  • Tsukiyama, T. and Wu, C. 1995. Purification and properties of an ATP-dependent nucleosome remodelling factor. Cell 83: 1011–1020.

    PubMed  Google Scholar 

  • Tsukiyama, T., Becker, P.B., and Wu, C. 1994. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor [see comments]. Nature 367: 525–532.

    PubMed  Google Scholar 

  • Turner, B.M., Birley, A.J. and Lavender, J. 1992. Hist one-H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384.

    PubMed  Google Scholar 

  • Tzamarias, D. and Struhl, K. 1994. Functional dissection of the yeast Cyc8–Tup1 transcriptional co-repressor complex. Nature 369: 758–761.

    PubMed  Google Scholar 

  • Varga-Weisz, P. D., Wilm, M., Bonte, E., Dumas, K., Mann, M. and Becker, P. B. 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II [erratum published in Nature 389: 1003]. Nature 388: 598–602.

    PubMed  Google Scholar 

  • Wade, P.A., Jones, P.L., Vermaak, D., Veenstra, G.J.C., Imhof, A., Sera, T., Tse, C., Ge, H., Shi, Y.B., Hansen, J.C. and Wolffe, A.P. 1998. Histone deacetylase directs the dominant silencing of transcription in chromatin: association with MeCP2 and the Mi-2 chromodomain SWI SNF ATPase. Cold Spring Harbor Symp. Quant. Biol. 63: 435–445.

    PubMed  Google Scholar 

  • Waltzer, L. and Bienz, M. 1995. Drosophila CBP represses the transcription factor TCF to antagonise Wingless signalling. Nature 395: 521–525.

    Google Scholar 

  • Wang, W.D., Xue, Y.T., Zhou, S., Kuo, A., Cairns, B.R. and Crabtree, G.R. 1996. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10: 2117–2130.

    PubMed  Google Scholar 

  • Weiler, K.S. and Wakimoto, B.T. 1995. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29: 577–605.

    PubMed  Google Scholar 

  • Winston, F. and Carlson, M. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8: 387–391.

    PubMed  Google Scholar 

  • Wolffe, A.P. and Pruss, D. 1996. Chromatin: hanging on to histones. Curr. Biol. 6: 234–237.

    PubMed  Google Scholar 

  • Wong, J., Shi, Y.-B. and Wolffe, A.P. 1995. A role for nucleosome assembly in both silencing and activation of the Xenopus TrßA gene by the thyroid hormone receptor. Genes Dev. 9: 2696–2711.

    PubMed  Google Scholar 

  • Workman, J.K. and Roeder, R.G. 1987. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51: 613–622.

    PubMed  Google Scholar 

  • Yao, T., Oh, S.P., Fuchs, M., Zhou, N., Ch'ng, L., Newsome, D., Bronson, R.T., Li, E., Livingston, D.M. and Eckner, R. 1998. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcription integrator p300. Cell 93: 361–372.

    PubMed  Google Scholar 

  • Ye, Q. and Worman, H.J. 1996. Interaction between an integral protein of the nuclear-envelope inner membrane and human chromoadomain proteins homologous to Drosophila HP1. J. Biol. Chem. 271: 14653–14656.

    PubMed  Google Scholar 

  • Yoshida, M. and Beppu, T. 1988. Reversible arrest of proliferation of rat 3Y1 fibroblasts in both G1 and G2 phases by trichostatin A. Exp. Cell Res. 177: 122–131.

    PubMed  Google Scholar 

  • Yoshinaga, S.K., Peterson, C.L., Herskowitz, I. and Yamamoto, K.R. 1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258: 1598–1604.

    PubMed  Google Scholar 

  • Zhang, W. and Nelson, D.A. 1988. Histone acetylation in chicken erythrocytes. Rates of acetylation and evidence that histones in both active and potentially active chromatin are rapidly modified. Biochem. J. 250: 233–239.

    PubMed  Google Scholar 

  • Zhang, Y., LeRoy, G., Seelig, H.P., Lane, W.S. and Reinberg, D. 1998. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95: 279–289.

    PubMed  Google Scholar 

  • Zitomer, R.S. and Lowry, C.V. 1992. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev. 56: 1–11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, P. Transcriptional transgene silencing and chromatin components. Plant Mol Biol 43, 221–234 (2000). https://doi.org/10.1023/A:1006483428789

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006483428789

Navigation