Skip to main content
Log in

RNA-directed DNA methylation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

RNA-DNA interactions can serve as a signal that triggers de novo DNA methylation in plants. As yet, this RNA-directed DNA methylation mechanism merely targets transgenes, but it appears likely that methylation of some endogenous sequences is also directed by RNA. RNA-directed methylation of cytosine residues specifically occurs along the DNA regions that are complementary to the directing RNA pointing to the formation of a putative RNA-DNA duplex. Dense methylation patterns and the methylation of cytosine residues at symmetric and asymmetric sites are detectable on both DNA strands within these regions. Methylation progressively decreases in the sequences adjacent to the putative RNA-DNA duplex. The extreme sensitivity of RNA-directed DNA methylation was demonstrated by analysing a short 30 bp DNA region that was complementary to the targeting RNA. Association of RNA-directed DNA methylation with homology-dependent gene silencing indicated that the methylation-directing RNA molecules may be double-stranded or may contain double-stranded regions. Whereas the function of DNA methylation in transcriptional gene silencing is nearly understood, its role in post-transcriptional gene silencing is still under discussion. In mammals, X-chromosome inactivation and genomic imprinting are associated with DNA methylation but how methylation is initiated is unclear. The observation of a correlation between specific antisense RNAs and transcriptional and post-transcriptional gene silencing may indicate that RNA-directed DNA methylation is involved in epigenetic gene regulation throughout eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarado, A.S. and Newmark, P.A. 1999. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. Sci. USA 96: 5049–5054.

    PubMed  Google Scholar 

  • Amasino, R.M., Powell, A.L.T. and Gordon, M.P. 1984. Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Mol. Gen. Genet. 197: 437–446.

    PubMed  Google Scholar 

  • Barlow, D.P. 1997. Competition: a common motif for the imprinting mechanism. EMBO J. 16: 6899–6905.

    PubMed  Google Scholar 

  • Barry, C., Faugeron, G. and Rossignol, J.-L. 1993. Methylation induced premeiotically in Ascobolus: coextension with DNA repeat length and effect on transcription elongation. Proc. Natl. Acad. Sci. USA 90: 4557–4561.

    PubMed  Google Scholar 

  • Baulcombe, D.C. 1996. RNA as a target and an initiator of posttranscriptional gene silencing in transgenic plants. Plant Mol. Biol. 32: 79–88.

    PubMed  Google Scholar 

  • Baulcombe, D.C. and English, J.J. 1996. Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Curr. Opin. Biotechnol. 7: 173–180.

    Google Scholar 

  • Bender, J. 1998. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem. Sci. 23: 252–256.

    PubMed  Google Scholar 

  • Bestor, T.H. and Tycko, B. 1996. Creation of genomic methylation patterns. Nature Genet. 12: 363–367.

    PubMed  Google Scholar 

  • Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding, S.W. and Baulcombe, D.C. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17: 6739–6746.

    PubMed  Google Scholar 

  • Busslinger, M., Hurst, J. and Flavell, R.A. 1983. DNA methylation and the regulation of the globin gene expression. Cell 34: 197–206.

    PubMed  Google Scholar 

  • Clark, S.J., Harrison, J., Paul, C.L. and Frommer, M. 1994. High sensitivity mapping of methylated cytosines. Nucl. Acids Res. 22: 2990–2997.

    PubMed  Google Scholar 

  • Clemson, C.M., McNeil, J.A., Willard, H.F. and Lawrence, J.B. 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear chromosome structure. J. Cell Biol. 132: 259–275.

    PubMed  Google Scholar 

  • Cogoni, C., Irelan, J.T., Schumacher, M., Schmidhauser, T.J., Selker, E.U. and Macino, G. 1996. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J. 15: 3153–3163.

    PubMed  Google Scholar 

  • Colot, V., Maloisel, L. and Rossignol, J.L. 1996. Interchromosomal transfer of epigenetic states in Ascobulus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86: 855–864.

    PubMed  Google Scholar 

  • Diéguez, M.J., Vaucheret, H., Paszkowski, J. and Mittelsten Scheid, O. 1998. Cytosine methylation at CG and CNG sites is not a prerequisite for the initiation of transcriptional gene silencing in plants, but is required for its maintenance. Mol. Gen. Genet. 259: 207–215.

    PubMed  Google Scholar 

  • Elmayan, T. and Vaucheret, H. 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J. 9: 787–797.

    Google Scholar 

  • Elmayan, T., Balzergue, S., Beon, F., Bourdon, V., Daubremet, J., Guenet, Y., Mourrain, P., Palauqui, J.C., Vernhettes, S., Vialle, T., Wostrikoff, K. and Vaucheret, H. 1998. Arabidopsis mutants impaired in cosuppression. Plant Cell 10: 1747–1757.

    PubMed  Google Scholar 

  • Finnegan, E.J., Genger, R.K., Peacock, W.J. and Dennis, E.S. 1998. DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 223–247.

    PubMed  Google Scholar 

  • Fire, A. 1999. RNA-triggered gene silencing. Trends Genet. 15: 358–363.

    PubMed  Google Scholar 

  • Fire, A., Xu, S.Q., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.

    PubMed  Google Scholar 

  • Frommer, M., McDonald, L.E., Millar, D.S., Collins, C.M., Watt, F., Grigg, G.W., Molloy, P.L. and Paul, C.L. 1992. A genomic sequencing protocol that yields a positive display of 5–methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89: 1827–1831.

    PubMed  Google Scholar 

  • Goerz, A., Schaefer, W., Hirasawa, E. and Kahl, G. 1988. Constitutive and light-induced DNase I hypersensitive sites in the rbcS genes of pea (Pisum sativum). Plant Mol. Biol. 11: 561–573.

    Google Scholar 

  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349–352.

    PubMed  Google Scholar 

  • Harders, J., Lukás, N., Robert-Nicoud, M., Jovin, T.M. and Riesner, D. 1989. Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning. EMBO J. 8: 3941–3949.

    PubMed  Google Scholar 

  • Henikoff, S. 1990. Position-effect variegation after 60 years. Trends Genet. 6: 422–426.

    PubMed  Google Scholar 

  • Hohn, T., Corsten, S., Rieke, S., Müller, M. and Rothnie, H. 1996. Methylation of coding region alone inhibits gene expression in plant protoplasts. Proc. Natl. Acad. Sci. USA 93: 8334–8339.

    PubMed  Google Scholar 

  • Hu, J.F., Balaguru, K.A., Ivaturi, R.D., Oruganti, H., Li, T., Nguyen, B.T., Vu, T.H. and Hoffman, A.R. 1999. Lack of reciprocal genomic imprinting of sense and antisense RNA of mouse insulin-like growth factor II receptor in the central nervous system. Biochem. Biophys. Res. Comm. 257: 604–608.

    PubMed  Google Scholar 

  • Ingelbrecht, I., Van Houdt, H., Van Montagu, M. and Depicker, A. 1994. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl. Acad. Sci. USA 91: 10502–10506.

    PubMed  Google Scholar 

  • Jacobs, J.J.M.R., Sanders, M., Bots, M., Andriessen, M., van Eldik, G.J., Litiere, K., Van Montagu, M. and Cornelissen, M. 1999. Sequences throughout the basic β-1,3–glucanase mRNA coding region are targets for homology dependent post-transcriptional gene silencing. Plant J. 20: 143–152.

    PubMed  Google Scholar 

  • Jensen, S., Gassama, M.P. and Heidmann, T. 1999. Taming of transposable elements by homology-dependent gene silencing. Nature Genet. 21: 209–212.

    PubMed  Google Scholar 

  • Jirtle, R.L. 1999. Genomic imprinting and cancer. Exp. Cell Res. 248: 18–24.

    PubMed  Google Scholar 

  • Jones, A.L., Thomas, C.L. and Maule, A.J. 1998a. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. EMBO J. 17: 6385–6393.

    PubMed  Google Scholar 

  • Jones, P.L., Veenstra, G.J.C., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., Strouboulis, J. and Wolffe, A.P. 1998b. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19: 187–191.

    PubMed  Google Scholar 

  • Jong, M.T.C., Gray, T.A., Ji, Y.G., Glenn, C.C., Saitoh, S., Driscoll, D.J. and Nicholls, R.D. 1999. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum. Mol. Genet. 8: 783–793.

    PubMed  Google Scholar 

  • Jorgensen, R.A., Que, Q. and Stam, M. 1999. Do unintended antisense transcripts contribute to sense cosuppression in plants? Trends Genet 15: 11–12.

    PubMed  Google Scholar 

  • Jost, J.P. and Bruhat, A. 1997. The formation of DNA methylation patterns and the silencing of genes. Prog. Nucl. Acid Res. Mol. Biol. 57: 217–248.

    Google Scholar 

  • Kass, S.U., Landsberger, N. and Wolffe, A.P. 1997. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 7: 157–165.

    PubMed  Google Scholar 

  • Kennerdell, J.R. and Carthew, R.W. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95: 1017–1026.

    PubMed  Google Scholar 

  • Kooter, J.M., Matzke, M.A. and Meyer, P. 1999. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4: 340–347.

    PubMed  Google Scholar 

  • Korneev, S.A., Park, J.H. and O'Shea, M. 1999. Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J. Neurosci. 19: 7711–7720.

    PubMed  Google Scholar 

  • Kumpatla, S.P., Chandrasekharan, M.B., Iyer, L.M., Li, G.F. and Hall, T.C. 1998. Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci. 3: 97–104.

    Google Scholar 

  • Lee, J.T. and Lu, N. 1999. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99: 47–57.

    PubMed  Google Scholar 

  • Lee, J.T., Davidow, L.S. and Warshawsky, D. 1999a. Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genet. 21: 400–404.

    PubMed  Google Scholar 

  • Lee, M.P., DeBaun, M.R., Mitsuya, K., Galonek, H.L., Brandenburg, S., Oshimura, M. and Feinberg, A.P. 1999b. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KvLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl. Acad. Sci. USA 96: 5203–5208.

    PubMed  Google Scholar 

  • Lewis, J.D., Meehan, R.R., Henzel, W.J., Maurer-Fogy, I., Jeppesen, P., Klein, F. and Bird, A. 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69: 905–914.

    PubMed  Google Scholar 

  • Li, E. 1999. The mojo of methylation. Nature Genet. 23: 5–6.

    PubMed  Google Scholar 

  • Loss, P., Schmitz, M., Steger, G. and Riesner, D. 1991. Formation of a thermodynamically metastable structure containing hairpin II is critical for infectivity of potato spindle tuber viroid RNA. EMBO J. 10: 719–727.

    PubMed  Google Scholar 

  • Luff, B., Pawlowski, L. and Bender, J. 1999. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3: 505–511.

    Article  PubMed  Google Scholar 

  • Malagnac, F., Wendel, B., Goyon, C., Faugeron, G., Zickler, D., Rossignol, J.L., Noyer Weidner, M., Vollmayr, P., Trautner, T.A. and Walter, J. 1997. A gene essential for de novo methylation and development in ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91: 281–290.

    PubMed  Google Scholar 

  • Matzke, M.A. and Matzke, A.J.M. 1995. How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107: 679–685.

    PubMed  Google Scholar 

  • Matzke, M.A. and Matzke, A.J.M. 1998a. Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell. Mol. Life Sci. 54: 94–103.

    PubMed  Google Scholar 

  • Matzke, A.J.M. and Matzke, M.A. 1998b. Position effects and epigenetic silencing of plant transgenes. Curr. Opin. Plant Biol. 1: 142–148.

    PubMed  Google Scholar 

  • Matzke, A.J.M., Neuhuber, F., Park, Y.-D., Ambros, P.F. and Matzke, M.A. 1994. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244: 219–229.

    PubMed  Google Scholar 

  • McDonald, L.E., Paterson, C.A. and Kay, G.F. 1998. Bisulfite genomic sequencing-derived methylation profile of the Xist gene throughout early mouse development. Genomics 54: 379–386.

    PubMed  Google Scholar 

  • Mette, F., van der Winden, J., Matzke, M.A. and Matzke, A.J.M. 1999. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 18: 241–248.

    PubMed  Google Scholar 

  • Metzlaff, M., O'Dell, M., Cluster, P.D. and Flavell, R.B. 1997. RNA-mediated degradation and chalcone synthase A silencing in Petunia. Cell 88: 845–854.

    PubMed  Google Scholar 

  • Mise, N., Goto, Y., Nakajima, N. and Takagi, N. 1999. Molecular cloning of antisense transcripts of the mouse Xist gene. Biochem. Biophys. Res. Comm 258: 537–541.

    PubMed  Google Scholar 

  • Misquitta, L. and Paterson, B.M. 1999. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA 96: 1451–1456.

    PubMed  Google Scholar 

  • Mitsuya, K., Meguro, M., Lee, M.P., Katoh, M., Schulz, T.C., Kugoh, H., Yoshida, M.A., Niikawa, N., Feinberg, A.P. and Oshimura, M. 1999. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum. Mol. Genet. 8: 1209–1217.

    PubMed  Google Scholar 

  • Montgomery, M.K. and Fire, A. 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and cosuppression. Trends Genet. 14: 255–258.

    PubMed  Google Scholar 

  • Moore, T., Constancia, M., Zubair, M., Bailleul, B., Feil, R., Sasaki, H. and Reik, A. 1997. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc. Natl. Acad. Sci. USA 94: 12509–12514.

    PubMed  Google Scholar 

  • Nan, X.S., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. and Bird, A. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    PubMed  Google Scholar 

  • Ng, H.H., Zhang, Y., Hendrich, B., Johnson, C.A., Turner, B.M., Erdjument-Bromage, H., Tempst, P., Reinberg, D. and Bird, A. 1991. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet. 23: 58–61.

    Google Scholar 

  • Ngô, H., T schudi, C., Gull, K. and Ullu, E. 1998. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95: 14687–14692.

    PubMed  Google Scholar 

  • Nick, H., Bowen, B., Ferl, R.J. and Gilbert, W. 1986. Detection of cytosine methylation in the maize alcohol dehydrogenase gene by genomic sequencing. Nature 319: 243–246.

    Google Scholar 

  • Norris, D.P., Patel, D., Kay, G.F., Penny, G.D., Brockdorff, N., Sheardown, S.A. and Rastan, S. 1994. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77: 41–51.

    PubMed  Google Scholar 

  • Palauqui, J.C. and Balzergue, S. 1999. Activation of systemic silencing by localised introduction of DNA. Curr. Biol. 9: 59–66.

    PubMed  Google Scholar 

  • Palauqui, J.C., Elmayan, T., Pollien, J.M. and Vaucheret, H. 1997. Systemic acquired silencing: transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16: 4738–4745.

    PubMed  Google Scholar 

  • Palladino, F. and Gasser, S. 1994. Telomeric maintenance and gene repression: a common end? Curr. Opin. Cell Biol. 6: 373–379.

    PubMed  Google Scholar 

  • Paro, R. 1993. Mechanisms of heritable gene repression during development of Drosophila. Curr. Opin. Cell Biol. 5: 999–1005.

    PubMed  Google Scholar 

  • Pélissier, T. and Wassenegger, M. 2000. A DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA 6: 55–65

    PubMed  Google Scholar 

  • Pélissier, T., Thalmeir, S., Kempe, D., Sänger, H.L. and Wassenegger, M. 1999. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucl. Acids Res. 27: 1625–1634.

    PubMed  Google Scholar 

  • Que, Q., Wang, H.Y., English, J.J. and Jorgensen, R.A. 1997. The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9: 1357–1368.

    PubMed  Google Scholar 

  • Reik, W. and Constancia, M. 1997. Making sense or antisense? Nature 389: 669–671.

    PubMed  Google Scholar 

  • Rivier, D.H. and Pillus, L. 1994. Silencing speaks up. Cell 76: 963–966.

    PubMed  Google Scholar 

  • Roth, S.Y. 1995. Chromatin-mediated transcriptional repression in yeast. Curr. Opin. Gen. Dev. 5: 168–173.

    Google Scholar 

  • Rougeulle, C., Cardoso, C., Fontés, M., Colleaux, L. and Lalande, M. 1998. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nature Genet. 19: 15–16.

    PubMed  Google Scholar 

  • Rountree, M. and Selker, E.U. 1997. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 11: 2383–2393.

    PubMed  Google Scholar 

  • Ryner, L.C. and Swain, A. 1995. Sex in the '90s. Cell 81: 483–493.

    PubMed  Google Scholar 

  • Sänger, H.L. 1987. Viroid replication. In: T.O. Diener (Ed.) The Viroids, Plenum, New York, pp. 117–166.

    Google Scholar 

  • Schiebel, W., Pélissier, T., Riedel, L., Thalmeir, S., Schiebel, R., Kempe, D., Lottspeich, F., Sänger, H.L. and Wassenegger, M. 1998. Isolation of a RNA-directed RNA polymerase-specific cDNA clone from tomato leaf-tissue mRNA. Plant Cell 10: 2087–2101.

    PubMed  Google Scholar 

  • Schmutte, C. and Jones, P.A. 1998. Involvement of DNA methylation in human carcinogenesis. Biol. Chem. 379: 377–388.

    PubMed  Google Scholar 

  • Schuurs, T.A., Schaeffer, E.A.M. and Wessels, J.G.H. 1997. Homology-dependent silencing of the SC3 gene in Schizophyllum commune. Genetics 147: 589–596.

    PubMed  Google Scholar 

  • Smilinich, N.J., Day, C.D., Fitzpatrick, G.V., Caldwell, G.M., Lossie, A.C., Cooper, P.R., Smallwood, A.C., Joyce, J.A., Schofield, P.N., Reik, W., Nicholls, R.D., Weksberg, R., Driscoll, D.J., Maher, E.R., Shows, T.B. and Higgins, M.J. 1999. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc. Natl. Acad. Sci. USA 96: 8064–8069.

    PubMed  Google Scholar 

  • Smith, S.S. 1998. Stalling of DNA methyltransferase in chromosome stability and chromosome remodelling. Int. J. Mol. Med. 1: 147–156.

    PubMed  Google Scholar 

  • Smith, H.A., Swaney, S.L., Parks, T.D., Wernsman, E.A. and Dougherty, W.G. 1994. Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell 6: 1441–1453.

    Article  PubMed  Google Scholar 

  • Stam, M., de Bruin, R., Kenter, S., van der Hoorn, R.A.L., van Blokland, R., Mol, J.N.M. and Kooter, J.M. 1997. Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. Plant J. 12: 63–82.

    Google Scholar 

  • Stam, M., Viterbo, A., Mol, J.N.M. and Kooter, J.M. 1998. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol. Cell Biol. 18: 6165–6177.

    PubMed  Google Scholar 

  • Tabara, H., Grishok, A. and Mello, C.C. 1998. RNAi in C. elegans: soaking in the genome sequence. Science 282: 430–431.

    PubMed  Google Scholar 

  • Timmons, L. and Fire, A. 1998. Specific interference by ingested dsRNA. Nature 395: 854–854.

    PubMed  Google Scholar 

  • Van Houdt, H., Ingelbrecht, I., Van Montagu, M. and Depicker, A. 1997. Post-transcriptional silencing of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3'-flanking regions. Plant J. 12: 379–392.

    Google Scholar 

  • Vaucheret, H. 1993. Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant: 90 bp of homology in the promoter sequence are sufficient for trans-inactivation. C.R. Acad. Sci. Paris 316: 1471–1483.

    Google Scholar 

  • Vaucheret, H. 1994. Promoter-dependent trans-inactivation in transgenic tobacco plants: kinetic aspects of gene silencing and gene reactivation. C.R. Acad. Sci. Paris 317: 310–323.

    Google Scholar 

  • Vaucheret, H., Kronenberger, J., Lépingle, A., Vilaine, F., Boutin, J.P. and Caboche, M. 1992. Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J. 2: 559–569.

    PubMed  Google Scholar 

  • Voinnet, O., Vain, P., Angell, S. and Baulcombe, D.C. 1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95: 177–187.

    PubMed  Google Scholar 

  • Wade, P.A., Gegonne, A., Jones, P.L., Ballestar, E., Aubry, F. and Wolffe, A.P. 1999. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet. 23: 62–66.

    PubMed  Google Scholar 

  • Wassenegger, M. and Pélissier, T. 1998. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol. 37: 349–362.

    PubMed  Google Scholar 

  • Wassenegger, M. and Pélissier, T. 1999. Signalling in gene silencing. Trends Plant Sci. 4: 207–209.

    PubMed  Google Scholar 

  • Wassenegger, M., Heimes, S., Riedel, L. and Sänger, H.L. 1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76: 567–576.

    PubMed  Google Scholar 

  • Waterhouse, P.M., Graham, M.W. and Wang, M.B. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95: 13959–13964.

    PubMed  Google Scholar 

  • Wolffe, A.P. 1997. Sinful repression. Nature 387: 16–17.

    PubMed  Google Scholar 

  • Wutz, A., Smrzka, O.W., Schweifer, N., Schellander, K., Wagner, E.F. and Barlow, D.P. 1997. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389: 745–749.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassenegger, M. RNA-directed DNA methylation. Plant Mol Biol 43, 203–220 (2000). https://doi.org/10.1023/A:1006479327881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006479327881

Navigation