Skip to main content
Log in

The inhibited xanthophyll cycle is responsible for the increase in sensitivity to low temperature photoinhibition in rice leaves fed with glutathione

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Exposure of intact rice leaves to an irradiance of 1000 μmol m−2 s−1 at 6 °C for 2 h caused severe photoinhibition of Photosystem II. The rate and extent of photoinhbition were greatly exacerbated in leaves fed with 10 mM reduced glutathione (GSH) or 10 mM cysteine. Analyses of antioxidant enzyme activities as well as the application of protein synthesis inhibitors revealed that the increased sensitivity to photoinhibition following GSH feeding was not related to its effect on cellular antioxidant systems. On the other hand, feeding with GSH markedly suppressed the formation of zeaxanthin and antheraxanthin via the xanthophyll cycle and its associated nonradiative energy dissipation in leaves chilled in high light, suggesting that the stimulating effect of exogenous GSH on photoinhibition may be attributable to its action on the xanthophyll cycle. In vitro experiments using isolated thylakoids indicated that GSH is a weak inhibitor of violaxanthin deepoxidation. The possible implications of these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vivo. Methods Enzymol 105: 121-126

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Park Y-I and Chow WS (1997) Photoinactivation and photoprotection of Photosystem II in nature. Physiol Plant 100: 214-223

    Article  CAS  Google Scholar 

  • Anderson MD, Prasad TK and Stewart CR (1995) Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings, Plant Physiol 109: 1247-1257

    PubMed  CAS  Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the Environment, pp 123-150. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Beauchamp CO and Fridovich I (1971) Superoxide dismutase. Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44: 276-287

    Article  PubMed  CAS  Google Scholar 

  • Bielawski W and Joy K (1986) Reduced and oxidized glutathione and glutathione reductase activity in tissues of Pisum sativum. Planta 139: 9-17

    Google Scholar 

  • Bredenkamp GJ and Baker NR (1994) Temperature-sensitivity of D1 protein metabolism in isolated Zea mays chloroplasts. Plant Cell Environ 17: 205-210

    Article  CAS  Google Scholar 

  • Broadbent P, Creissen GP, Kular B, Wellburn AR and Mullineaux PM (1995) Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J 8: 247-255

    Article  CAS  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kular B, Leylang N, Reynolds H, Pastori g, Wellburn A and Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11: 1277-1291

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B and Adams III WW (1996) The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21-26

    Article  Google Scholar 

  • Eskling M, Arvidsson P-O and Åkerlund H-E (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100: 806-816

    Article  CAS  Google Scholar 

  • Fäber A, Young AJ, Ruban AV, Horton P and Jahns P (1997) Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants. The relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching. Plant Physiol 115: 1609-1618

    Google Scholar 

  • Fadzillah N, Gill V, Finch RP and Burdon RH (1996) Chilling, oxidative stress and antioxidant responses in shoot cultures of rice. Planta 199: 552-556

    Article  CAS  Google Scholar 

  • Foyer CH, Durjardyn M and Lemoine Y (1989) Responses of photosynthesis and the xanthophyll and ascorbate-glutathione cycles to changes in irradiance, photoinhibition and recovery. Plant Physiol Biochem 27: 751-760

    CAS  Google Scholar 

  • Foyer CH and Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21-25

    Article  Google Scholar 

  • Foyer CH, Lelandais M and Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92: 696-717

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF and Scott IM (1997) Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100: 241-254

    Article  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert K-j, Pruvost C and Jouanin L (1995) Over-expression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and improved photosynthesis in poplar (Populus tremula × P. alba) trees. Plant Physiol 109: 1047-1057

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais J-M and Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87-92

    CAS  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99: 197-209

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106: 207-212

    Article  PubMed  CAS  Google Scholar 

  • Hager A (1980) The reversible, light-induced conversion of xanthophylls in the chloroplast. In: Czygan F-C (ed) Pigments in Plants, pp 5779. Fisher, Stuttgart/New York

    Google Scholar 

  • Hahn M and Walbot V (1989) Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91: 930-934

    PubMed  CAS  Google Scholar 

  • Hérouart D, Van Montagu M and Inzé D (1993) Redox-activated expression of the cytosolic copper/zinc superoxide dimutase gene in Nicotiana. Proc Natl Acad Sci USA 90: 3108-3112

    Article  PubMed  Google Scholar 

  • Huner NPA, Öquist G and Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3: 224-230

    Article  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G and Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627-640

    Article  PubMed  CAS  Google Scholar 

  • Krause GH (1994) Photoinhibition induced by low temperature. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 331-348. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Melis A (1999) Photosystem II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo? Trend Plant Sci 4: 130-135

    Article  Google Scholar 

  • Mullineaux PM and Creissen GP (1997) Glutathione reductase: Regulation and role in oxidative stress. In: Scandalios JG (ed) Oxidative Stress and the Molecular Biology of Antioxidative Defenses, pp. 667-713. CSHL Press, New York

    Google Scholar 

  • Nakano Y and Asada K (1981) Hydrogen peroxide is scavenged by ascorbate peroxidase in spinach chloroplast. Plant Cell Physiol 22: 867-880

    CAS  Google Scholar 

  • Polle A (1997) Defense against photooxidative damage in plants. In: Scandalios JG (ed) Oxidative Stress and the Molecular Biology of Antioxidative Defenses, pp 623-666. CSHL Press, New York

    Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35: 15-44

    Article  CAS  Google Scholar 

  • Saruyama H and Tanida M (1995) Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and — tolerant cultivars of rice (Oryza sativa L.). Plant Sci 109: 105-113

    Article  CAS  Google Scholar 

  • Schaedle M and Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59: 1011-1012

    PubMed  CAS  Google Scholar 

  • Schreiber U, Bilger W and Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indictor for rapid assessment of in vivo photosynthesis. In: Schulze D-D and Caldwell MM (eds) Ecophysiology of Photosynthesis, pp 49-70. Springer-Verlag, Berlin

    Google Scholar 

  • Smith IK (1985) Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol 79: 1044-1047

    PubMed  CAS  Google Scholar 

  • Streb P, Feierabend J and Bligny R (1997) Resistance to photoinhibition of Photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20: 1030-1040

    Article  CAS  Google Scholar 

  • Stuiver CEE, DeKok LJ, Clement JM and Kuiper PJC (1995) How indicative are changes in major metabolites for freezing tolerance of wheat. Bot Acta 108: 106-110

    CAS  Google Scholar 

  • Thayer SS and Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC, Photosynth Res 23: 331-343

    Article  CAS  Google Scholar 

  • Tyystärvi E, Riikonen M, Arisi A-CM, Kettunen R, Jouanin L and Foyer CH (1999) Photoinhibition of Photosystem II in tobacco plants overexpressing glutathione reductase and poplars overexpressing superoxide dismutase. Physiol Plant 105: 409-416

    Article  Google Scholar 

  • Wingate VPM, Lawton MA and Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87: 206-210

    Article  PubMed  CAS  Google Scholar 

  • Wingsle G and Karpinski S (1996) Differential redox regulation by glutathione of glutathione reductase and CuZn-superoxide dismatase gene expression in Pinus sylvestris L. Needles, Planta 198: 151-157

    Article  PubMed  CAS  Google Scholar 

  • Xu C-C, Jeon YA, Hwang JH and Lee C-H (1999) Suppression of zeaxanthin epoxidation by chloroplast phosphatase inhibitors in rice leaves. Plant Sci 146: 27-34

    Article  CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51: 639-648

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingyun Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, CC., Li, L. & Kuang, T. The inhibited xanthophyll cycle is responsible for the increase in sensitivity to low temperature photoinhibition in rice leaves fed with glutathione. Photosynthesis Research 65, 107–114 (2000). https://doi.org/10.1023/A:1006478011629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006478011629

Navigation