Skip to main content
Log in

Padé and Padé-Type Approximation for 2π-Periodic Lp Functions

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The numerical evaluation of a 2π-periodic L p function by its Fourier series expansion may become a difficult task whenever only a few coefficients of this series are known or it converges too slowly. In this paper we propose a general method to evaluate such any function, by means of composed Padé-type approximants. The definition, the main ideas, and the properties of the approximants will be given. After having done this successfully, we will consider several concrete examples and a theoretical application to the convergence acceleration problem of functional sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouir, A., Guyt, P., González-Vera, P. and Orive, R.: On the convergence of general order multivariate Padé-type approximants, J. Approx. Theory 86(2) (1996), 216–228.

    Google Scholar 

  2. Akhiezer, N. I.: The Classical Moment Problem and Some Questions in Analysis, Hafner, New York, 1965.

    Google Scholar 

  3. Abroladze, A. and Wallin, H.: Padé-type approximants with preassigned poles, In: Proc. 3rd Int. Conf. on Approx. and Optimization in the Caribbean, Oct. 8–13, 1995, EMIS 1995, http://www.emis.de/proceedings/3ICAOC/ambrol.ps.qz.

  4. Abroladze, A. and Wallin, H.: Convergence rates of Padé-type approximants, J. Approx. Theory 86(3) (1996), 310–319.

    Google Scholar 

  5. Abroladze, A. and Wallin, H.: Padé-type approximants of Markov and meromorphic functions, J. Approx. Theory 88(1977), 354–369.

    Google Scholar 

  6. Arms, R. J. and Edrei, A.: The Padé table and continued fractions generated by totally positive sequences, In: Mathematical Essays dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 1–21.

    Google Scholar 

  7. Baker, G. A., Jr. and Graves-Morris, P. R.: Padé Approximants, Encycl. Math. 59, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  8. Baratchart, L., Saff, E. B. and Wielongsky, F.: Rational interpolation of the exponential function, Canad. J. Math. 47(6) (1995), 1121–1147.

    Google Scholar 

  9. Baumel, J. L., Gammel, J. L. and Nuttal, J.: Placement of cuts in Padé-like approximation, J. Comput. Appl. Math. 7(1981), 135–140.

    Google Scholar 

  10. Bieberbach, L.: Lehrbuch der Funktiontheorie (two volumes), Leipzig, 1927.

  11. Brezinski, C.: Accelération de la Convergence en Analyse Numérique,Editions du Laboratoire de Calcul de USTL, Lille, 1973.

    Google Scholar 

  12. Brezinski, C.: Padé-type approximants for double power series, J. Indian Math. Soc. 42(1978), 267–282.

    Google Scholar 

  13. Brezinski, C.: Rational approximation to formal power series, J. Approx. Theory 25(1979), 295–317.

    Google Scholar 

  14. Brezinski, C.: Padé-type Approximation and General Orthogonal Polynomials, Internat. Ser. Numer. Math., Birkhäuser, Basel, 1980.

    Google Scholar 

  15. Brezinski, C.: Outlines of Padé-type approximation, In: H. Werner et al.(eds), Computational Aspects of Complex Analysis, D. Reidel, 1983, pp. 1–50.

  16. Brezinski, C.: Padé-type approximants: Old and new, Jahrb. Ñberblicke Mathematik (1983), 37–63.

  17. Brezinski, C.: Partial Padé approximation, J. Approx. Theory 54(1988), 210–233.

    Google Scholar 

  18. Brezinski, C.: The Asymptotic Behavior of Sequences and New Series Transformations Based on the Cauchy Product, Publication ANO 199, USTL, Lille, 1988.

    Google Scholar 

  19. Bromwich, T. J.: An Introduction to the Theory of Infinite Series, 2nd edn, Macmillan, London, 1949.

    Google Scholar 

  20. Bultheel, A., González-Vera, P., Hendriksen, E. and Njåstad, O.: On the convergence of multipoint Padé-type approximants and quadrature formulas associated with the unit circle, Numer. Algorithms 13(1996), 321–344.

    Google Scholar 

  21. Bultheel, A., González-Vera, P., Hendriksen, E. and Njåstad, O.: Rates of convergence of multipoint rational approximants and quadrature formulas on the unit circle, J. Comput. Appl. Math. 77(1997), 77–102.

    Google Scholar 

  22. Bultheel, A., González-Vera, P., Hendriksen, E. and Njåstad, O.: Monotonicity of multi-point Padé approximants, Numer. Algorithms, to appear.

  23. Bultheel, A., González-Vera, P., Hendriksen, E. and Njåstad, O.: Orthogonal Rational Functions, Cambridge Monographs Appl. Comput. Math. 5, Cambridge University Press, 1999.

  24. Cala-Rodriguez, F. and López-Lagomasino, G.:Multipoint Padé-type approximants. Exact rate of convergence, Constr. Approx. 14(1998), 259–272.

    Google Scholar 

  25. Clark,W. D.: Infinite series transformations and their applications, Thesis, University of Texas, 1967.

  26. Courant, R.: Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, Interscience, New York, 1950.

    Google Scholar 

  27. Daras, N. J.: Domaine de convergence d' une transformation de la suite des sommes partielles d'une fonction holomorphe et applications aux approximants de type Padé, Nouvelle Thèse, Université de Lille Flandres-Artois, 1988.

  28. Daras, N. J.: The convergence of Padé-type approximants to holomorphic functions of several complex variables, Appl. Numer. Math. 6(1989/90), 341–360.

    Google Scholar 

  29. Daras, N. J.: Two counter-examples for the Okada theorem in Cn, Riv. Mat. Univ. Parma 5(2) (1993), 267–278.

    Google Scholar 

  30. Daras, N. J.: Continuity of distributions and global convergence of Padé-type approximants in Runge domains, Indian J. Pure Appl. Math. 26(2) (1995), 121–130.

    Google Scholar 

  31. Daras, N. J.: Summability transforms of Taylor series, Math. Japon. 43(2) (1996), 497–503.

    Google Scholar 

  32. Daras, N. J.: Rational approximation to harmonic functions, Numer. Algorithms 20(1999), 285–301.

    Google Scholar 

  33. Daras, N. J.: Composed Padé-type approximation, J. Comput. Appl. Math., to appear.

  34. Daras, N. J.: Interpolation methods for the evaluation of a 2_-periodic finite Baire measure, submitted.

  35. Daras, N. J.: Integral representations for Padé-type operators, submitted.

  36. Daras, N.J.: Generalized Padé-type approximants and integral representations, submitted.

  37. Eiermann, M.: On the convergence of Padé-type approximants to analytic functions, J. Comput. Appl. Math. 10(1984), 219–227.

    Google Scholar 

  38. Evans, G. C.: The Logarithmic Potential, Amer. Math. Soc. Colloq. Publ. VI, 1927.

  39. Gammel, J. L. and Power, D. C.: On the critical exponent for four common three dimensional lattices, J. Phys. A 16(1983), L359.

    Google Scholar 

  40. Gawronski, W. and Trautner, R.: Vershärfung eines Satzes von Borel–Okada über Summierbarkeit von Potenzreihen, Period. Math. Hungar. 7(1976), 201–211.

    Google Scholar 

  41. Geronimus, J.: On polynomials orthogonal on the circle, on trigonometric moment problem, and on allied Carathéodory and Schur functions, C.R. (Doklady) Acad. Sci. USSR (N.S.) 39 (1943), 291–295.

    Google Scholar 

  42. Geronimus, J.: On polynomials orthogonal on the circle, on trigonometric moment problem, and on allied Carathéodory and Schur functions, Mat. Sb. 57(1944), 99–130.

    Google Scholar 

  43. Gonchar, A. A.: On the speed of rational approximation of some analytic functions, Mat. Sb. 105(147) (1978), English transl. in: Math. USSR Sb. 34(2) (1978), 131–145.

    Google Scholar 

  44. Gonchar, A. A. and López, G.: On Markov's theorem for multipoint Padé approximants, Mat. Sb. 105(147), (1978), English transl. in: Math. USSR Sb. 34 (1978), 449–459.

    Google Scholar 

  45. González-Vera, P. and Jiménez-Páiz, M.: Multipoint Padé-type approximation: An algebraic approach, Rocky Mountain J. Math. 29(2) (1999), 531–558.

    Google Scholar 

  46. González-Vera, P., Jiménez-Páiz,M., López-Lagomasino, G. and Orive, R.: On the convergence of quadrature formulas connected with multipoint Padé-type approximants, J. Math. Anal. Appl. 202(1996), 747–775.

    Google Scholar 

  47. González-Vera, P., Jiménez-Páiz, M., Orive, R. and Santos-Leon, J. C.: On the convergence of quadrature formulas for complex weight functions, J. Math. Anal. Appl. 189(1995), 514–532.

    Google Scholar 

  48. González-Vera, P. and Njåstad, O.: Positive multipoint Padé approximation, J. Comput. Appl. Math. 32(1990), 107–269.

    Google Scholar 

  49. Gutknecht, M. H.: The rational interpolation problem revisited, Rocky Mountain J. Math. 21 (1991), 263–280.

    Google Scholar 

  50. Hendriksen, E. and Njåstad, O.: Positive multipoint Padé continued fractions, Proc. Edinburgh Math. Soc. 32(1989), 261–269.

    Google Scholar 

  51. Hoffman, K.: Banach Spaces of Analytic Functions, Dover Publications, New York, 1962.

    Google Scholar 

  52. Kronecker, L.: Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleinchungen, Monatsb. Koenigl. Preuss. Akad. Wiss. Berlin (1881), 535–600.

  53. Landkof, N. S.: Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  54. Laser, R.: Introduction to Fourier Series, Marcel Dekker, Inc., New York, 1996.

    Google Scholar 

  55. Laurent, P. J.: Approximation et Optimisation, Hermann, Paris, 1972.

    Google Scholar 

  56. López, G.: On the convergence of multipoint Padé approximants for Stieltjes type functions, Dokl. Acad. Nauk USSR 239(1978), 793–796.

    Google Scholar 

  57. López, G.: Conditions for the convergence of multipoint Padé approximants of Stieltjes type functions, Mat. Sb. 107(149) (1978), English transl. in: Math. USSR Sb. 35 (1978), 363–376.

    Google Scholar 

  58. López, G.: On the asymptotics of the ratio of orthogonal polynomials and the convergence of multipoint Padé approximants, Mat. Sb. 128(170) (1985), English transl. in: Math. USSR Sb. 56 (1987).

  59. López, G.: Asymptotics of polynomials orthogonal with respect to varying measures, Constr. Approx. 5(1989), 199–219.

    Google Scholar 

  60. Lubinsky, D. S.: Divergence of complex rational approximants, Pacific J. Math. 108(1983), 141–153.

    Google Scholar 

  61. Magnus, Al.: Rate of convergence of sequences of Padé-type approximants and pole detection in the complex plane, In: M. G. de Bruin and H. Van Rossum(eds), Padé Approximation and its Applications, Lecture Notes in Math. 888, Springer-Verlag, 1981, pp. 300–308.

  62. Matos, A. C.: Some convergence results for the generalized Padé-type approximants, Numer. Algorithms 11(1996), 255–269.

    Google Scholar 

  63. Matos, A. C.: Integral representation of the error and asymptotic error bounds for generalized Padé-type approximants, J. Comput. Appl. Math. 77(1997), 239–254.

    Google Scholar 

  64. Meinguet, J.: On the solubility of the Cauchy interpolation problem, In: M. Alfredo et al.(eds), Approximation Theory, Lecture Notes in Math. 1329, Springer-Verlag, Berlin, 1988, pp. 125–157.

    Google Scholar 

  65. Meyer, B.: On convergence in capacity, Bull. Austral. Math. Soc. 14(1976), 1–5.

    Google Scholar 

  66. Nevanlinna, R.: Ñber beschränkte Funktionen, die in gegebenen Punken vorgeschiebene Werte annehmen, Ann. Acad. Sci. Fenn. Ser. A 13(1) (1919).

  67. Njåstad, O.: An extended Hamburger moment problem, Proc. Edingurgh Math. Soc. 28(1995), 167–183.

    Google Scholar 

  68. Njåstad, O.: Unique solvability of an extended Hamburger moment problem, J. Math. Anal. Appl. 124(1987), 502–519.

    Google Scholar 

  69. Nuttall, J.: The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31(1970), 129–140.

    Google Scholar 

  70. Pommerenke, C.: Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41 (1973), 775–780.

    Google Scholar 

  71. Powell, R. and Shan, S.: Summability Theory and its Applications, Van Nostrand, London, 1972.

    Google Scholar 

  72. Rakhmanov, E. A.: On the convergence of Padé approximants in classes of holomorphic functions, Math. USSR Sb. 40(1980), 149–155.

    Google Scholar 

  73. Rudin, W.: Functional Analysis, McGraw-Hill, New York, 1973.

    Google Scholar 

  74. Salam, A.: Vector Padé-type approximants and vector Padé approximants, J. Approx. Theory 97(1) (1999), 92–112.

    Google Scholar 

  75. Schur, I.: Ñber Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I, II, J. Reine Angew. Math. 147(1917), 205–232; 148 (1918), 122–145; Gesammelte Abhandlungen, Vol. II, nos 29, 30; reprinted by Herglotz, Schur et al. in: G. Herglotz and I. Schur et al. (B. Fritzsche and B. Kirstein(eds)) Ausgewählte arbeiten zu den ursprüngen der Schur-analysis, B. G. Teubner, Stuttgart, 1991; English translation in: I. Gohberg (ed.), I. Schur Methods in Operator Theory and Signal Processing, Oper. Theory Adv. Appl. 18, Birkhäuser, Basel, Boston, 1986.

    Google Scholar 

  76. Stahl, H.: Extremal domains associated with an analytic function I and II, Complex Variables Theory Appl. 4(1985), 311–324and 325–338.

    Google Scholar 

  77. Stahl, H.: The structure of extremal domains associated with an analytic function, Complex Variables Theory Appl. 4(1985), 339–354.

    Google Scholar 

  78. Stahl, H.: Orthogonal polynomials with complex-valued weight function I and II, Constr. Approx. 2(1986), 225–240and 241–251.

    Google Scholar 

  79. Stahl, H.: On the convergence of generalized Padé approximants, Constr. Approx. 5(1989), 221–240.

    Google Scholar 

  80. Stahl, H.: The convergence of Padé approximants to functions with branch points, J. Approx. Theory, submitted.

  81. Stahl, H.: Convergence of rational interpolants, In: Numerical Analysis Conference in Honour of Jean Meinguet, December 1995, Université Catholique de Louvain, Belgian Math. Soc., pp. 12–32.

  82. Stahl, H. and Totik, V.: General Orthogonal Polynomials, Encycl. Math. 43, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  83. Szegö, G.: Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23 (4th edn with revisions, 1975; 1st edn, 1939), Amer. Math. Soc., Providence, RI.

  84. Tsuji, M.: Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

    Google Scholar 

  85. Van Iseghem, J.: Applications des approximants de type Padé, Thèse 3ème cycle, Université de Lille, 1982.

  86. Wallin, H.: The convergence of Padé approximants and the size of the power series coefficients, Appl. Anal. 4(1974), 235–251.

    Google Scholar 

  87. Wallin, H.: Potential theory and approximation of analytic functions by rational interpolation, In: Proc. of the Colloquium on Complex Analysis at Joensun, Lecture Notes in Math. 747, Springer-Verglag, Berlin, 1979, pp. 434–450.

    Google Scholar 

  88. Walsh, J. L.: Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 20 (3rd edn, 1960; 1st edn, 1935), Amer. Math. Soc., Providence, RI.

    Google Scholar 

  89. Wimp, J.: Toeplitz arrays, linear sequence transformations and orthogonal polynomials, Numer. Math. 23(1974), 1–18.

    Google Scholar 

  90. Zygmund, A.: Trigonometric Series, 2nd edn, Cambridge University Press, 1959.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daras, N.J. Padé and Padé-Type Approximation for 2π-Periodic Lp Functions. Acta Applicandae Mathematicae 62, 245–343 (2000). https://doi.org/10.1023/A:1006459830925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006459830925

Navigation