Experimental & Applied Acarology

, Volume 24, Issue 3, pp 165–189 | Cite as

Varroa jacobsoni (Acari: Varroidae) is more than one species

  • D.L. Anderson
  • J.W.H. Trueman


Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia–Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study.

Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas.

Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control.

Varroa jacobsoni Varroa destructor mtDNA CO-I gene sequence genetic variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akratanakul, P. and Burgett, M. 1975.Varroa jacobsoni: a prospective pest of honeybees in many parts of the world. Bee World 56: 119-120.Google Scholar
  2. Anderson, D.L. 1994.Non-reproduction of Varroa jacobsoni in Apis mellifera colonies in Papua New Guinea and Indonesia. Apidologie 25: 412-421.Google Scholar
  3. Anderson, D.L. and Sukarsih, 1996.Changed Varroa jacobsoni reproduction in Apis mellifera colonies in Java. Apidologie 27: 461-466.Google Scholar
  4. Anderson, D.L. and Fuchs, S. 1998.Two genetically distinct populations of Varroa jacobsoni with contrasting reproductive abilities on Apis mellifera. J. Apic. Res. 37: 69-78.Google Scholar
  5. Anderson, D.L., Gibbs, A.J. and Gibson, N.L. 1998.Identification and phylogeny of spore-cyst fungi (Ascosphaera spp.) using ribosomal DNA sequences. Mycol. Res. 102: 541-547.Google Scholar
  6. Biasiolo, A. 1992.Lack of allozyme variability among Varroa mite populations. Exp. Appl. Acarol. 16: 287-294.Google Scholar
  7. Camazine, S. 1986.Differential reproduction of the mite, Varroa jacobsoni (Mesostigmata: Varroidae), on Africanized and European Honey bees (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 79: 801-803.Google Scholar
  8. Craig, S. and Beaton, C.D. 1996.A simple cryo-SEM method for delicate plant tissues. J. of Microscopy 182: 102-105.Google Scholar
  9. Crane, E. 1978.The Varroa mite. Bee World 59: 164.Google Scholar
  10. De Guzman, L.I. and Delfinado-Baker, M. 1996.A new species of Varroa (Acari: Varroidae) associated with Apis koschevnikovi (Apidae: Hymenoptera) in Borneo. Int. J. Acarol. 22: 23-27.Google Scholar
  11. De Guzman, L.I., Rinderer, T.E. and Stelzer, J.A. 1997.DNA evidence of the origin of Varroa jacobsoni Oudemans in the Americas. Biochem. Genet. 35: 327-335.PubMedGoogle Scholar
  12. De Guzman, L.I., Rinderer, T.E., Stelzer, J.A. and Anderson, D.L. 1998.Congruence of RAPD and mitochondrial DNA markers in assessing Varroa jacobsoni genotypes. J. Apic. Res. 37: 49-51.Google Scholar
  13. De Guzman, L.I. and Rinderer, T.E. 1999.Identification and comparison of Varroa species infesting honey bees. Apidologie 30: 85-95.Google Scholar
  14. De Guzman, L.I., Rinderer, T.E. and Stelzer, J.A. 1999.Occurrence of two genotypes of Varroa jacobsoni Oud. in North America. Apidologie 30: 31-36.Google Scholar
  15. De Jong, D. and Soares, A.E.E. 1997.An isolated population of Italian bees that has survived Varroa jacobsoni infestation without treatment for over 12 years. Am. Bee J. 137: 742-747.Google Scholar
  16. De Jong, D.D., Morse, R.A. and Eickwort, G.C. 1982.Mite pests of honey bees. Ann. Rev. Ento. 27: 229-252.Google Scholar
  17. Delfinado-Baker, M. 1984.The nymphal stages and male of Varroa jacobsoni Oudemans a parasite of honey bees. Internat. J. Acarol. 10: 75-80.Google Scholar
  18. Delfinado-Baker, M. 1988.Variability and biotypes of Varroa jacobsoni Oudemans. Am. Bee J. 128: 567-568.Google Scholar
  19. Delfinado-Baker, M. and Aggarwal, K. 1987a. A new Varroa (Acari: Varroidae) from the nest of Apis cerana (Apidae). Internat. J. Acarol. 13: 233-237.Google Scholar
  20. Delfinado-Baker, M. and Aggarwal, K. 1987b. Infestation of Tropilaelaps clareae and Varroa jacobsoni in Apis mellifera colonies in Papua New Guinea. Am. Bee J. 127: 443.Google Scholar
  21. Delfinado-Baker, M. and Houck, M.A. 1989.Geographical variation in Varroa jacobsoni (Acari, Varroidae): application of multivariate morphometric techniques. Apidologie 20: 345-358.Google Scholar
  22. Eguaras, E., Marcangeli, K., Oppedisano, N. and Fernandez, N. 1995.Mortality and reproduction of Varroa jacobsoni in resistant colonies of honey bees (Apis mellifera) in Argentina. Bee Science 3: 174-178.Google Scholar
  23. Felsenstein, J. 1978.Cases in which parsimony of compatibility methods will be positively misleading. Syst. Zool. 27: 401-410.Google Scholar
  24. Felsenstein, J. 1985.Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.Google Scholar
  25. Hadisoesilo, S. and Otis, G.W. 1998.Differences in drone cappings of Apis cerana and Apis nigrocincta. J. Apic. Res. 37: 11-15.Google Scholar
  26. Hasegawa, M., Kishino, H. and Yano, T. 1985.Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 21: 160-174.Google Scholar
  27. Issa, M.R.C. 1989.Enzyme patterns in Varroa and Apis from Brazil and Germany. Apidologie 20: 506.Google Scholar
  28. Koeniger, N., Koeniger, G. and Wijayagunasekera, N.H.P. 1981.Observations on the adaptation of Varroa jacobsoni to its natural host Apis cerana in Sri Lanka. Apidologie 12: 37-40.Google Scholar
  29. Kraus, B. and Hunt, G. 1995.Differentiation of Varroa jacobsoni Oud populations by random amplification of polymorphic DNA (RAPD). Apidologie 26: 283-290.Google Scholar
  30. Lodesani, M., Colombo, M. and Spreafico, M. 1995.Ineffectiveness of Apistan®treatment against the mite Varroa jacobsoni Oud in several districts of Lombardy (Italy). Apidologie 26: 67-72.Google Scholar
  31. Matheson, A. 1996.World bee health update 1996.Bee World 77: 45-51.Google Scholar
  32. Moretto, G., Goncalves, L.S., DeJong, D.D. and Bichuette, M.Z. 1991.The effects of climate and bee race on Varroa jacobsoni Oud infestations in Brazil. Apidologie 22: 197-203.Google Scholar
  33. Moritz, R.F.A. and Haenel, H. 1984.Restricted development of the parasitic mite Varroa jacobsoni Oud in the Cape honey bee Apis mellifera capensis Esch. Z. Angew Entomol. 97: 91-95.Google Scholar
  34. Navajas, M., Gutierrez, J., Bonato, O., Bolland, H.R. and Mapangou-Divassa, S. 1994.Intraspecific diversity of the Cassava Green Mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breading. Exp. Appl. Acarol. 18: 351-360.PubMedGoogle Scholar
  35. Oudemans, A.C. 1904a. Nog iets aangaande de „Afbeeldingen met beschrijving van insecten, schadelijk voor naaldhout”. Entomologische Berichten 18: 156-164.Google Scholar
  36. Oudemans, A.C. 1904b. Note VIII. On a new genus and species of parasitic acari. Notes Leyden Museum 24: 216-222.Google Scholar
  37. Ritter, W., Michel, P., Bartholdi, M. and Schwendemann, A. 1990.Development of tolerance to Varroa jacobsoni in bee colonies in Tunisia. In: Proceedings of the International Symposium on Recent Research in Bee Pathology, W. Ritter (ed.). Apimondia, pp. 54-59.Google Scholar
  38. Saiki, R.K. 1990.Amplification of genomic DNA. In: PCR Protocols, M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White (eds), pp. 13-20.Academic Press: San Diego, CA.Google Scholar
  39. Siddall, M.E. 1998.Success of parsimony in the four-taxon case: long-branch repulsion by likelihood in the Farris Zone. Cladistics 14: 209-220.Google Scholar
  40. Smith, D.R. and Hagen, R.H. 1996.The biogeography of Apis cerana as revealed by mitochondrial DNA sequence data. J. Kansas Entomol. Soc. 69: 294-310.Google Scholar
  41. Swofford, D.L., Olsen, G.J., Waddell, P.J. and Hillis, D.M. 1996.Phylogenetic Inference. Ch. 11 in D.M. Hillis, C. Moritz and B.K. Mable, tiMolecular Systematics (2nd edn.), Sinauer Associates, Sunderland, MA.Google Scholar
  42. Swofford, D.L. 1998.PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0d64.Sinauer Associates, Sunderland, MA.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • D.L. Anderson
    • 1
  • J.W.H. Trueman
    • 2
  1. 1.CSIRO EntomologyCanberraAustralia
  2. 2.Bioinformatics Group, Research School of Biological SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations