Skip to main content
Log in

Rapid evolutionary divergence of Photosystem I core subunits PsaA and PsaB in the marine prokaryote Prochlorococcus

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The nucleotide sequences of the genes coding for the subunits of the Photosystem I (PS I) core, PsaA and PsaB were determined for the marine prokaryotic oxyphototrophs Prochlorococcus sp. MED4 (CCMP1378), P. marinus SS120 (CCMP1375) and Synechococcus sp. WH7803. Divergence of these sequences from those of both freshwater cyanobacteria and higher plants was remarkably high, given the conserved nature of PsaA and PsaB proteins. In particular, the PsaA of marine prokaryotes showed several specific insertions and deletions with regard to known PsaA sequences. Even in between the two Prochlorococcus strains, which correspond to two genetically different ecotypes with shifted growth irradiance optima, the sequence identity was only 80.2% for PsaA and 88.9% for PsaB. Possible causes and implications of the fast evolution rates of these two PS I core subunits are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Campbell L and Vaulot D (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA) Deep-Sea Res 40: 2043-2060

    Google Scholar 

  • Cantrell A and Bryant DA (1987) Molecular cloning and nucleotide sequence of the psaA and psaB genes of the cyanobacterium Synechococcus sp PCC 7002. Plant Mol Biol 9: 453-468

    Article  CAS  Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L and Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: An oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157: 297-300

    Article  CAS  Google Scholar 

  • Chitnis PR (1996) Photosystem I — update on photosynthetic electron transport. Plant Physiol 111.

  • Chitnis PR, Xu Q, Chitnis VP and Nechushtai R (1995) Function and organization of Photosystem I polypeptides. Photosynth Res 44: 23-40 661–669

    Article  CAS  Google Scholar 

  • Dayhoff MO, Schwartz RM and Orcutt BC (1978) A model of evolutionary change in proteins. In Dayhoff MO (ed) Atlas of Protein Sequence and Structure, pp 345-352. Natural Biomedical Research Foundation, Washington, DC

    Google Scholar 

  • Douglas SE (1998) Plastid evolution: Origins, diversity, trends. Curr Opin Genet Develop 8: 655-661

    Article  CAS  Google Scholar 

  • Felsenstein J (1992) PHYLIP (phylogeny interference package). University of Washington, Seattle

    Google Scholar 

  • Garczarek L, van der Staay GWM, Thomas JC and Partensky F (1998) Isolation and characterization of Photosystem I from two strains of the marine oxychlorobacterium Prochlorococcus. Photosynth Res 56: 131-141

    Article  CAS  Google Scholar 

  • Garczarek L, Hess W, Holtzendorff J, van der Staay, GWM and Partensky, F (2000) Multiplication of antenna genes as a major adaptation process to growth at low light in a marine prokaryote. Proc Natl Acad Sci USA 97: 4098-4101

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Weihe A, Loiseaux-de Goer S, Partensky F and Vaulot D (1995) Characterization of the single psbA gene of Prochlorococcus marinus CCMP1375 (Prochlorophyta). Plant Mol Biol 27: 1189-1196

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Partensky F, van der Staay GWM, Garcia-Fernandez JM, Börner T and Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93: 11126-11130

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Steglich C, Lichtlé C and Partensky F (1999) Phycoerythrins of the oxyphotobacterium Prochlorococcus marinus are associated to the thylakoid membrane and are encoded by a single large gene cluster. Plant Mol Biol 40: 507-521

    Article  PubMed  CAS  Google Scholar 

  • Hiller RD and Larkum AWD (1985) The chlorophyll-protein complexes of Prochloron sp. (Prochlorophyta). Biochim Biophys Acta 806: 107-115

    Article  CAS  Google Scholar 

  • Honda D, Yokota A and Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strain. J Mol Evol 48: 723-739

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M and Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95: 13319-13323

    Article  PubMed  CAS  Google Scholar 

  • Klukas O, Schubert W-D, Jordan P, Krauß N, Fromme P, Witt HAT and Saenger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD and PsaE. J Biol Chem 274: 7351-7360

    Article  PubMed  CAS  Google Scholar 

  • Koenig F and Schmidt M (1995) Gloeobacter violaceus — investigation of an unusual photosynthetic apparatus — absence of the long wavelength emission of Photosystem I in 77 K fluorescence spectra. Physiol Plant 94: 621-628

    Article  CAS  Google Scholar 

  • Lockhart PJ, Larkum AWD, Steel MA, Waddell PJ and Penny D (1996) Evolution of chlorophyll and bacteriochlorophyll: The problem of invariant sites in sequence analysis. Proc Natl Acad Sci USA 93: 1930-1934

    Article  PubMed  CAS  Google Scholar 

  • Lopez P, Forterre P and Philippe H (1999) The root of the tree of life in the light of the covarion model. J Mol Evol 49: 496-508

    Article  PubMed  CAS  Google Scholar 

  • Moore LR and Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol Ocean 44: 628-638

    Article  Google Scholar 

  • Moore LR, Goericke R and Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus: Influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser 116: 259-275

    Google Scholar 

  • Moore LR, Rocap G and Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464-467

    Article  PubMed  CAS  Google Scholar 

  • Morel A (1978) Available, usable and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res 25: 673-688

    Article  CAS  Google Scholar 

  • Palenik B and Swift H (1996) Cyanobacterial evolution and prochlorophyte diversity as seen in DNA-dependent RNA polymerase gene sequences. J Phycol 32: 638-646

    Article  CAS  Google Scholar 

  • Partensky F, Hoepffner N, Li WKW, Ulloa O and Vaulot D (1993) Photoacclimation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. Plant Physiol 101: 285-296

    PubMed  CAS  Google Scholar 

  • Partensky F, LaRoche J, Wyman K and Falkowski P (1997) The divinyl chlorophyll a/b-protein complexes of two strains of the oxyphototrophic marine prokaryote Prochlorococcus — characterization and response to changes in growth irradiance. Photosynth Res 51: 209-222

    Article  CAS  Google Scholar 

  • Partensky F, Hess WR, and Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106-127

    PubMed  CAS  Google Scholar 

  • Saitou N and Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425

    PubMed  CAS  Google Scholar 

  • Scheller HV, Naver H and Møller BL (1997) Molecular aspects of Photosystem I. Physiol Plant 100: 842-851

    Article  CAS  Google Scholar 

  • Schubert W-D, Klukas O, Krauß N, Saenger W, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: Comprehensive structure analysis. J Mol Biol 272: 741-769

    Article  PubMed  CAS  Google Scholar 

  • Schubert W-D, Klukas O, Saenger W, Witt HAT, Fromme P and Krauss N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems — a comparison based on the structural model of Photosystem I. J Mol Biol 280: 297-314

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Xu Q, Chitnis VP, Jin P and Chitnis PR (1997) Topography of the Photosystem I core proteins of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 272: 21793-21802

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Xu W, Hervás M, Navarro JA, De La Rosa m and Chitnis PR (1999) Oxidizing side of the cyanobacterial Photosystem — Evidence for interaction between the electron donor proteins and a luminal surface helix of the PsaB subunit. J Biol Chem 274: 19048-19054

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG and Gibson DJ (1994) Clustal W: Improving the sensitivity of multiple sequence alignment through sequence weighting, position specific gap penalties and matrix choice. Nucleic Acids Res 22: 4673-4680

    PubMed  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VPW and Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46: 327-338

    PubMed  CAS  Google Scholar 

  • Urbach E, Scanlan DJ, Distel DL, Waterbury JB and Chisholm SW (1998) Rapid diversification of marine picophytoplankton with dissimilar light harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (cyanobacteria). J Mol Evol 46: 188-201

    Article  PubMed  CAS  Google Scholar 

  • van der Staay GWM, Brouwer A, Baard RL, van Mourik F and Matthijs HCP (1992) Separation of Photosystems I and II from the oxychlorobacterium (prochlorophyte) Prochlorothrix hollandica and association of chlorophyll b binding antennae with Photosystem II. Biochim Biophys Acta 1102: 220-228

    Article  CAS  Google Scholar 

  • van der Staay GWM, Moon-van der Staay SY, Garczarek L and Partensky F (1998) Characterization of the Photosystem I subunits PsaI and PsaL from two strains of the marine oxyphototrophic prokaryote Prochlorococcus. Photosynth Res 57: 183-192

    Article  CAS  Google Scholar 

  • van der Staay GWM and Partensky F (1999) The 21 kDa protein associated with Photosystem I in Prochlorococcus marinus is the PsaF protein (Accession No. AJ131438). (PGR99-067). Plant Physiol 120: 339

    Article  Google Scholar 

  • Waterbury JB and Rippka R (1989) Order Chroococcales Wettstein 1924, Emend. Rippka et al. 1979. In: Kreig NR and Holt JB (eds) Bergey's Manual of Systematic Bacteriology, pp 1728-01746. Williams and Wilkins, Baltimore

    Google Scholar 

  • Zhang Z, Green BR and Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400: 155-159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Partensky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Staay, G.W., Moon-van der Staay, S.Y., Garczarek, L. et al. Rapid evolutionary divergence of Photosystem I core subunits PsaA and PsaB in the marine prokaryote Prochlorococcus. Photosynthesis Research 65, 131–139 (2000). https://doi.org/10.1023/A:1006445810996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006445810996

Navigation