Skip to main content
Log in

Nitrogen ligation to the manganese cluster of Photosystem II in the absence of the extrinsic proteins and as a function of pH

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Three extrinsic proteins (PsbO, PsbP and PsbQ), with apparent molecular weights of 33, 23 and 17 kDa, bind to the lumenal side of Photosystem II (PS II) and stabilize the manganese, calcium and chloride cofactors of the oxygen evolving complex (OEC). The effect of these proteins on the structure of the tetramanganese cluster, especially their possible involvement in manganese ligation, is investigated in this study by measuring the reported histidine-manganese coupling [Tang et al. (1994) Proc Natl Acad Sci USA 91: 704–708] of PS II membranes depleted of none, two or three of these proteins using ESEEM (electron spin echo envelope modulation) spectroscopy. The results show that neither of the three proteins influence the histidine ligation of manganese. From this, the conserved histidine of the 23 kDa protein can be ruled out as a manganese ligand. Whereas the 33 and 17 kDa proteins lack conserved histidines, the existence of a 33 kDa protein-derived carboxylate ligand has been posited; our results show no evidence for a change of the manganese co-ordination upon removal of this protein. Studies of the pH-dependence of the histidine–manganese coupling show that the histidine ligation is present in PS II centers showing the S2 multiline EPR signal in the pH-range 4.2–9.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck WF, De Paula JC and Brudvig GW (1986) Ammonia binds to the manganese site of the O2-evolving complex of Photosystem II in the S2 state. J Am Chem Soc 108: 4018-4022

    Article  CAS  Google Scholar 

  • Boekema EJ, Nield J, Hankamer B and Barber J. (1998) Localization of the 23-kDa subunit of the oxygen-evolving complex of Photosystem II by electron microscopy. Eur J Biochem 252: 268-276

    Article  PubMed  CAS  Google Scholar 

  • Boussac A and Rutherford AW (1988) Nature of the inhibition of the oxygen-evolving enzyme of Photosystem II induced by sodium chloride washing and reversed by the addition of calcium or strontium. Biochemistry 27: 3476-3483

    Article  CAS  Google Scholar 

  • Boussac A, Zimmermann J-L and Rutherford AW (1990) Factors influencing the formation of modified S2 EPR signal and the S3 EPR signal in Ca2+-depleted Photosystem II. FEBS Lett 277: 69-74

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM and Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of Photosystem II: A critical assessment. Photosynth Res 56: 157-173

    Article  CAS  Google Scholar 

  • Britt RD (1996a) Oxygen evolution. In: Ort DR and Yocum CF (eds) Advances in Photosynthesis, Oxygenic Photosynthesis: The Light Reactions, pp 137-164. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Britt RD (1996b) Electron spin echo methods in photosynthesis research. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 235-253. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Britt RD, Zimmermann J-L, Sauer K and Klein MP (1989) Ammonia binds to the catalytic manganese of the oxygen-evolving complex of Photosystem II: Evidence by electron spin-echo envelope modulation spectroscopy. J Am Chem Soc 111: 3522-3532

    Article  CAS  Google Scholar 

  • Britt RD, DeRose VJ, Yachandra VK, Kim DH, Sauer K and Klein MP (1990) Pulsed EPR studies of the manganese center of the oxygen-evolving complex of Photosystem II. In: Baltscheffsky M (ed) Current Research in Photosynthesis, pp 769-772. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Buchel C, Barber J, Ananyev G, Eshaghi S, Watt R and Dismukes C (1999) Photoassembly of the manganese cluster and oxygen evolution from monomeric and dimeric CP47 reaction center Photosystem II complexes. Proc Natl Acad Sci USA 96: 14288-14293

    Article  PubMed  CAS  Google Scholar 

  • Campbell KA, Gregor W, Pham DP, Peloquin JM, Debus RJ and Britt RD (1998) The 23 and 17 kDa extrinsic proteins of Photosystem II modulate the magnetic properties of the S1-state manganese cluster. Biochemistry 37: 5039-5045

    Article  PubMed  CAS  Google Scholar 

  • Campbell KA, Force DA, Nixon PJ, Dole F, Diner BA and Britt RD (2000) Dual-mode EPR detects the initial intermediate in photoassembly of the Photosystem II Mn cluster: The influence of amino acid residue 170 of the D1 polypeptide on Mn co-ordination. J Am Chem Soc 122: 3754-3761

    Article  CAS  Google Scholar 

  • Chu HA, Nguyen AP and Debus RJ (1995a) Amino acid residues that influence the binding of manganese or calcium to Photosystem II. 1. The lumenal interhelical domains of the D1 polypeptide. Biochemistry 34: 5839-5858

    Article  PubMed  CAS  Google Scholar 

  • Chu HA, Nguyen AP and Debus RJ (1995b) Amino acid residues that influence the binding of manganese or calcium to Photosystem II. 2. The carboxy-terminal domain of the D1 polypeptide. Biochemistry 34: 5859-5882

    Article  PubMed  CAS  Google Scholar 

  • Cole JL, Yachandra VK, McDermott AE, Guiles RD, Britt RD, Dexheimer SL, Sauer K and Klein MP (1987) Structure of the manganese complex of Photosystem II upon removal of the 33-kilodalton extrinsic protein: An X-ray absorption spectroscopy study. Biochemistry 26: 5967-5973

    Article  PubMed  CAS  Google Scholar 

  • Damoder R and Dismukes GC (1984) pH dependence of the multiline, manganese EPR signal for the 's2’ state in PS II particles. FEBS Lett 174: 157-161

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102: 269-352

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (2000) The polypeptides of Photosystem II and their influence on manganotyrosyl-based oxygen evolution. In: Sigel S and Sigel H (eds) Manganese and its Role in Biological Processes, pp 657-711. Marcel Dekker, New York

    Google Scholar 

  • Debus RJ, Campbell KA, Peloquin JM, Pham DP and Britt RD (2000a) Histidine 332 of the D1 polypeptide modulates the magnetic and redox properties of the manganese cluster and tyrosine YZ in Photosystem II. Biochemistry 39: 470-478

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ, Campbell KA, Pham DP, Hays A-MA and Britt RD (2000b) Glutamate 189 of the D1 polypeptide modulates the magnetic and redox properties of the manganese cluster and tyrosine YZ in Photosystem II. Biochemistry (in press)

  • DeRose VJ, Yachandra VK, McDermott AE, Britt RD, Sauer K and Klein MP (1991) Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N. Biochemistry 30: 1335-1341

    Article  PubMed  CAS  Google Scholar 

  • Geijer P, Deak Z and Styring S (2000) Proton equilibria in the manganese cluster of Photosystem II control the intensities of the S0 and S2 state g ≈ 2 electron paramagnetic resonance signals. Biochemistry 39: 6763-6772

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist ML (1996) Pulsed electron paramagnetic resonance investigations of photosynthetic oxygen evolution. PhD thesis, University of California, Davis

    Google Scholar 

  • Hankamer B, Barber J and Boekema EJ (1997) Structure and membrane organization of Photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48: 641-671.

    Article  PubMed  CAS  Google Scholar 

  • Jansen T, Rother C, Steppuhn J, Reinke H, Beyreuther K, Jansson C, Andersson B and Herrmann RG (1987) Nucleotide sequences of complementary DNA clones encoding the complete 23-kDa and 16-kDa precursor proteins associated with the photosynthetic oxygen-evolving complex from spinach. FEBS Lett 216: 234-240

    Article  CAS  Google Scholar 

  • Kevan L (1979) Modulation of electron spin-echo decay in solids. In: Kevan L and Schwartz RN (eds) Time Domain Electron Spin Resonance, pp 279-341. John Wiley and Sons, New York

    Google Scholar 

  • Kok B, Forbush B and McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution. A linear four step mechanism. Photochem Photobiol 11: 457-475

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685

    Article  PubMed  CAS  Google Scholar 

  • Meyer B, Schlodder E, Dekker JP and Witt HT (1989) O2 evolution and Chl a +II (P-680+) nanosecond reduction kinetics in single flashes as a function of pH. Biochim Biophys Acta 974: 36-43

    CAS  Google Scholar 

  • Miller A-F and Brudvig GW (1991) A guide to electron paramagnetic resonance spectroscopy of Photosystem II membranes. Biochim Biophys Acta 1065: 1-18

    Article  Google Scholar 

  • Mims WB (1984) Elimination of the dead-time artefact in electron spin-echo spectra. J Magn Reson 59: 291-306

    CAS  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, Van Heel M and Barber J (2000) 3D map of the plant Photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Struct Biol 7: 44-47

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ, Trost JT and Diner BA (1992) Role of the carboxy terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in Photosystem II of the cyanobacterium Synechocystis sp. PCC6803: Assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 31: 10859-10871

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Inoue Y and Tang XS (1999) Structure of a histidine ligand in the photosynthetic oxygen-evolving complex as studied by light-induced Fourier transform infrared difference spectroscopy. Biochemistry 38: 10187-10195.

    Article  PubMed  CAS  Google Scholar 

  • Oh-Oka H, Tanaka S, Wada K, Kuwabara T and Murata N (1986) Complete amino-acid sequence of 33-kilodalton protein isolated from spinach Photosystem II particles. FEBS Lett 197: 63-66

    Article  CAS  Google Scholar 

  • Peloquin JM, Campbell KA, Randall DW, Evanchik MA, Pecoraro VL, Armstrong WH and Britt RD (2000) 55Mn ENDOR of the S2-state multiline EPR signal of Photosystem II: Implications on the structure of the tetranuclear Mn cluster. J Am Chem Soc 122: 10926-10942

    Article  CAS  Google Scholar 

  • Plijter JJ, De Groot A, Van Dijk MA and Van Gorkom HJ (1986) Destabilization by high pH of the S1-state of the oxygen-evolving complex in Photosystem II particles. FEBS Lett 195: 313-318

    Article  CAS  Google Scholar 

  • Preston C and Seibert M (1991) Protease treatments of Photosystem II membrane fragments reveal that there are four separate high-affinity Mn-binding sites. Biochemistry 30: 9625-9633

    Article  PubMed  CAS  Google Scholar 

  • Riggs-Gelasco PJ, Mei R, Yocum CF and Penner-Hahn JE (1996) Reduced derivatives of the Mn cluster in the oxygen-evolving complex of Photosystem II an EXAFS study. J Am Chem Soc 118: 2387-2399

    Article  CAS  Google Scholar 

  • Rosenberg C, Christian J, Bricker, TM and Putnam-Evans C (1999) Site-directed mutagenesis of glutamate residues in the large extrinsic loop of the Photosystem II protein CP 43 affects oxygen-evolving activity and PS II assembly. Biochemistry 38: 15994-16000

    Article  PubMed  CAS  Google Scholar 

  • Seidler A (1996) The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1277: 35-60

    Article  PubMed  Google Scholar 

  • Seidler A and Rutherford AW (1996) The role of the extrinsic 33 kDa protein in Ca2+ binding in Photosystem II. Biochemistry 35: 12104-12110

    Article  PubMed  CAS  Google Scholar 

  • Sturgeon BE and Britt RD (1992) Sensitive pulsed EPR spectrometer with an 8–18 GHz frequency range. Rev Sci Instrum 63: 2187-2192

    Article  CAS  Google Scholar 

  • Tang XS, Sivaraja M and Dismukes GC (1993) Protein and substrate coordination to the manganese cluster in the photosynthetic water oxidizing complex: 15N and 1H ENDOR spectroscopy of the S2 state multiline signal in the thermophilic cyanobacterium Synechococcus elongatus. J Am Chem Soc 115: 2382-2389

    Article  CAS  Google Scholar 

  • Tang XS, Diner BA, Larsen BS, Gilchrist ML, Lorigan GA and Britt RD (1994) Identification of histidine at the catalytic site of the photosynthetic oxygen-evolving complex. Proc Natl Acad Sci USA 91: 704-708

    Article  PubMed  CAS  Google Scholar 

  • Vermaas W, Charite J and Shen G (1990) Glu-69 of the D2 protein in Photosystem II is a potential ligand to Mn involved in photosynthetic oxygen evolution. Biochemistry 29: 5325-5332

    Article  PubMed  CAS  Google Scholar 

  • Yachandra VK, Sauer K and Klein MP (1996) Manganese cluster in photosynthesis — where plants oxidize water to dioxygen. Chem Rev 96: 2927-2950

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y and Kubota F (1987) Specific release of the extrinsic 18-kDa protein from spinach Photosystem-II particles by the treatment with NaCl and methanol and its application for large-scale purification of the three extrinsic proteins of Photosystem-II without chromatography. Biochim Biophys Acta 893: 579-583

    Article  CAS  Google Scholar 

  • Zimmermann J-L, Boussac A and Rutherford AW (1993) The manganese center of oxygen-evolving and Ca2+-depleted Photosystem II: A pulsed EPR spectroscopy study. Biochemistry 32: 4831-4841

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. David Britt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregor, W., Britt, R.D. Nitrogen ligation to the manganese cluster of Photosystem II in the absence of the extrinsic proteins and as a function of pH. Photosynthesis Research 65, 175–185 (2000). https://doi.org/10.1023/A:1006435432185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006435432185

Navigation