Skip to main content
Log in

Cell turgor: A critical factor for the proliferation of cyanobacteria at unfavorable salinity

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We employed chlorophyll a fluorometry in order to measure the evolution of turgor threshold (intracellular osmolality) during the adaptation of two genetic transformants of the freshwater cyanobacterium Synechococcus sp. PCC7942 to unfavorable external salinity: PAMCOD cells which oxidize imported choline and accumulate approx. 0.06–0.08 M glycine betaine; and PAM cells which do not oxidize choline [Deshnium et al. (1995a) Plant Mol Biol 29: 897–909]. Turgor thresholds increased linearly (a) with the NaCl concentration in the culture, and (b) with the molar sucrose/chlorophyll a ratio in the cell. PAMCOD cells could proliferate in culture medium containing 0.4 M NaCl (external osmolality, 0.815 Osm kg−1), after a lag period, during which intracellular sucrose rose to 10 mol (mol Chl a)−1, or more, and turgor threshold (cytoplasmic osmolality) exceeded 1 Osm kg−1. At comparative conditions, PAM cells accumulated approx. half as much sucrose, and attained approx. half as high turgor thresholds as the PAMCOD cells, but they did not proliferate. These results indicate that glycine betaine improved the salinity tolerance of the PAMCOD cells synergistically, by means of two effects that implicate sucrose, the main organic osmolyte of Synechocccus: enhancement of sucrose biosynthesis, and/or alleviation of sucrose toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allakhverdiev SI, Sakamoto A, Inaba M, Nishiyama Y and Murata N (2000) NaCl-induced inactivation of Photosytems I and II in Synechococcus: Contribution of K+/Na+, water channels and Na+/H+ antiporters. Plant Physiol 122: 1201-1208

    Article  PubMed  CAS  Google Scholar 

  • Avigad GM (1990) Disaccharides. In: Dey PM (ed) Methods in Plant Biochemistry, Vol 2 Carbohydrates, pp 111-188. Academic Press, London

    Google Scholar 

  • Blumwald E, Mehlhorn RJ and Packer L (1983a) Ionic osmoregulation during salt adaptation of the cyanobacterium Synechococcus 6311. Plant Physiol 73: 377-380

    PubMed  CAS  Google Scholar 

  • Blumwald E, Mehlhorn RJ and Packer L (1983b) Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques. Proc Natl Acad Sci USA 80: 2599-2602

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Wolosin JM and Packer L (1984) Na+/H+ exchange in the cyanobacterium Synechococcus 6311. Biochem Biophys Res Commun 122: 452-459

    Article  PubMed  CAS  Google Scholar 

  • Csonka LN and Hanson AD (1991) Prokaryotic osmoregulation: Genetics and physiology. Annu Rev Microbiol 45: 569-606

    Article  PubMed  CAS  Google Scholar 

  • Deshnium P, Los DA, Hayashi H, Mustardy L and Murata N (1995a) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29: 897-909

    Article  PubMed  CAS  Google Scholar 

  • Deshnium P, Los DA, Hayashi H and Murata N (1995b) Glycinebetaine enhances tolerance to salt stress in transgenic cyanobacterium. In: Mathis P (ed) Photosynthesis from Light to Biosphere, Vol. IV, pp 637-640. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Dewar MA and Barber J (1973) Cation regulation in Anacystis nidulans. Planta 113: 143-155

    Article  CAS  Google Scholar 

  • Dworsky A, Myer B, Regelsberger G, Fromwald S and Peschek GA (1995) Functional and immunological characterization of both ‘mitochondria-like’ and ‘chloroplast-like’ electron/transport proteins in isolated and purified cyanobacterial membranes. Bioelectrochem Bioenerg 38: 35-43

    Article  CAS  Google Scholar 

  • Fry IV, Huflejt M, Erber WWA, Peschek GA and Packer L (1986) The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity. Arch Biochem Biophys 244: 686-691

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG and Collier JL (1995) The responses of cyanobacteria to environmental conditions: Light and nutrients. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 641-675. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Imhoff JF and Rodriguez-Valera F (1984) Betaine is the main compatible solute of halophilic eubacteria J Bacteriol 160: 478-479

    PubMed  CAS  Google Scholar 

  • Khomutov G, Fry IV, Huflejt ME and Packer L (1990): Membrane lipid composition, fluidity and surface charge changes in response to growth of the fresh water cyanobacterium Synechococcus 6311 under high salinity. Arch Biochem Biophys 277: 263-267

    Article  PubMed  CAS  Google Scholar 

  • Mackay MA, Norton RS and Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130: 2177-2191

    CAS  Google Scholar 

  • Mehlhorn RJ and Sullivan R (1988) Measurement of bioenergetics phenomena in cyanobacteria with magnetic resonance techniques. Meth Enzymol 169, 509-518

    Article  Google Scholar 

  • Molitor V, Erber W and Peschek GA (1986) Increased levels of cytochrome oxidase and sodium proton antiporter in the plasma membrane of Anacystis nidulans after growth in sodium-enriched media. FEBS Lett 204: 251-256.

    Article  CAS  Google Scholar 

  • Moran P (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-dimethyl-formamide. Plant Physiol 69: 1376-1381

    PubMed  CAS  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced changes of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172: 242-251

    Article  PubMed  CAS  Google Scholar 

  • Nitschmann WH and Packer L (1992) NMR studies on Na+ transport in Synechococcus PCC 6311. Arch Biochem Biophys 294: 347-352

    Article  CAS  Google Scholar 

  • Nomura M, Ishitani M, Takabe T, Rai AK and Takabe T (1995) Synechococcus sp. PCC 7942 transformed with Escherichia coli genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol 107: 703-708

    PubMed  CAS  Google Scholar 

  • Paschinger H (1977) DCCD-induced sodium uptake by Anacystis nidulans. Arch Microbiol 113: 283-291

    Article  Google Scholar 

  • Papageorgiou GC (1996) The photosynthesis of cyanobacteria (blue-green bacteria) as probed by signal analysis of chlorophyll a fluorescence. J Sci Ind Res 55: 596-607

    CAS  Google Scholar 

  • Papageorgiou GC and Alygizaki-Zorba A (1997) A sensitive method for the estimation of the cytoplasmic osmolality of cyanobacterial cells using chlorophyll a fluorescence. Biochim Biophys Acta 1335: 1-4

    PubMed  CAS  Google Scholar 

  • Papageorgiou GC and Govindjee (1967) Changes in intensity and spectral distribution of fluorescence: Effect of light treatment on normal and DCMU-poisoned Anacystis nidulans. Biophys J 7: 375-389

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC and Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosytem II complex. Photosynthesis Res 44: 243-252

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Alygizaki-Zorba A, Ladas N and Murata N (1998) A method to probe the cytoplasmic osmolality and water and solute fluxes across the cell membrane of cyanobacteria with chlorophyll a fluorescence: Experiments with Synechococcus sp. PCC 7942. Physiol Plant 102: 215-224

    Article  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ and Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39: 51-56

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RT (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1-61

    Google Scholar 

  • Ritchie RJ (1992) Sodium transport and the origin of membrane potential in the cyanobacterium Synechococcus R-2 (Anacystis nidulans) PCC 7942. J Plant Cell Physiol 139: 320-330

    CAS  Google Scholar 

  • Stamatakis K and Papageorgiou GC (1999) Phycobilisome-to-Photosytem I excitation transfer is enhanced in water-depleted cells and depressed in water-replete cells of cyanobacterium Synechococcus sp. PCC 7942 In: Argyroudi-Akoyunoglou JH and Senger H (ed) The Chloroplast: From Molecular Biology to Biotechnology, pp 47-54. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Stamatakis K, Ladas NP, Alygizaki-Zorba A and Papagcorgiou GC (1999) Sodium choride-induced volume changes of freshwater cyanobacterium Synechococcus sp PCC 7942 cells can be probed by chlorophyll a fluorescence. Arch Biochem Biophys 370: 240-249

    Article  PubMed  CAS  Google Scholar 

  • Whatmore AM and Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 136: 2521-2526

    PubMed  CAS  Google Scholar 

  • Wolf AV, Brown MG and Prentiss PG (1983) Concentrative properties of aqueous solutions: Conversion trables. In: Handbook of Chemistry and Physics, 64th edn, pp D223-D272, Boca Raton, Florida

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Papageorgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladas, N.P., Papageorgiou, G.C. Cell turgor: A critical factor for the proliferation of cyanobacteria at unfavorable salinity. Photosynthesis Research 65, 155–164 (2000). https://doi.org/10.1023/A:1006423221150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006423221150

Navigation