Skip to main content
Log in

Genomic imprinting in plants: observations and evolutionary implications

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The epigenetic phenomenon of genomic imprinting occurs among both plants and animals. In species where imprinting is observed, there are parent-of-origin effects on the expression of imprinted genes in offspring. This review focuses on imprinting in plants with examples from maize, where gene imprinting was first described, and Arabidopsis. Our current understanding of imprinting in plants is presented in the context of cytosine methylation and imprinting in mammals, where developmentally essential genes are imprinted. Important considerations include the structure and organization of imprinted genes and the role of regional, differential methylation. Imprinting in plants may be related to other epigenetic phenomena including paramutation and transgene silencing. Finally, we discuss the role of gene structure and evolutionary implications of imprinting in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartolomei, M.S. and Tilghman, S.M. 1997. Genomic imprinting in mammals. Annu. Rev. Genet. 31: 493–525.

    PubMed  Google Scholar 

  • Beckett, J.B. 1991. Cytogenetic, genetic and plant breeding applications of B-A translocations in maize. In: P.G. Gupta and T. Stichiya (Eds.) Chromosome Engineering in Plants: Genetics, Breeding and Evolution, Elsevier, Amsterdam, pp. 493–529.

    Google Scholar 

  • Bender, J. 1998. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem. Sci. 3: 252–256.

    Google Scholar 

  • Berger, F. 1999. Endosperm development. Curr. Opin. Plant Biol. 2: 29–32.

    Google Scholar 

  • Bianchi, M.W. and Viotti, A. 1988. DNA methylation and tissuespecific transcription of storage protein genes of maize. Plant Mol. Biol. 11: 203–214.

    Google Scholar 

  • Birchler, J.A. 1980. On the non-autonomy of the small kernel phenotype produced by B-A translocations in maize. Genet. Res. Camb. 36: 111–116.

    Google Scholar 

  • Birchler, J.A. 1993. Dosage analysis of maize endosperm development. Annu. Rev. Genet. 27: 181–204.

    PubMed  Google Scholar 

  • Birchler, J.A. and Hart, J.R. 1987. Interactions of endosperm size factors in maize. Genetics 117: 309–317.

    Google Scholar 

  • Bird, A.P. and Taggart, M.H. 1980. Variable patterns of total DNA and rDNA methylation in animals. Nucl. Acids Res. 8: 1485–1497.

    PubMed  Google Scholar 

  • Birger, Y., Shemer, R., Perk, J., and Razin, A. 1999. The imprinting box of the mouse Igf2r gene. Nature 397: 84–88.

    PubMed  Google Scholar 

  • Brandeis, M., Kafri, T., Ariel, M., Chailler, J.R., McCarrey, J., Razin, A., and Cedar, H. 1993. The ontogeny of allelespecific methylation associated with imprinted genes. EMBO J. 12: 3669–3677.

    PubMed  Google Scholar 

  • Brannon, C.I. and Bartolomei, M.S. 1999. Mechanisms of genomic imprinting. Curr. Opin. Genet. Dev. 9: 164–170.

    PubMed  Google Scholar 

  • Brink, R.A. 1958. Paramutation at the R locus in maize. Cold Spring Harbor Symp. Quant. Biol. 23: 379–391.

    PubMed  Google Scholar 

  • Brown, S.W. and Nur, U. 1964. Heterochromatic chromosomes in the coccids. Science 145: 130–136.

    PubMed  Google Scholar 

  • Caspary, T., Cleary, M.A., Baker, C.C., Guan, X.-J. and Tilghman, S.M. 1998. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol. Cell Biol. 18: 3466–3474.

    PubMed  Google Scholar 

  • Castle, L.A, Errampalli, D., Atherton, T.L., Franzmann, L.H., Yoon, E.S. and Meinke, D.W. 1993. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet. 241: 504–514.

    PubMed  Google Scholar 

  • Cattenach, B.M. and Kirk, M. 1984. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315: 496–498.

    Google Scholar 

  • Chaillet, J.R., Vogt, T.F., Beier, D.R. and Leder, P. 1991. Parentalspecific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66: 77–83.

    PubMed  Google Scholar 

  • Chaudhuri, S. and Messing, J. 1994. Allele-specific parental imprinting of dzr1, a post-transcriptional regulator of zein accumulation. Proc. Natl. Acad. Sci. USA 91: 4867–4871.

    PubMed  Google Scholar 

  • Chaudhury, A.M., Luo, M., Miller, C., Craig, S., Dennis, E.S. and Peacock, W.J. 1997. Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94: 4223–4228.

    PubMed  Google Scholar 

  • Chen, C.C. 1977. In vitro development of plants from microspores of rice. In Vitro 13: 484–489.

    PubMed  Google Scholar 

  • Clarke, A. 1990. Genetic imprinting in clinical genetics. Development Suppl. 131–139.

  • Corley-Smith, G.E., Lim, C.J. and Brandhorst, B.P. 1996. Production of androgenetic zebrafish (Danio rerio). Genetics 142: 1265–1276.

    PubMed  Google Scholar 

  • Crouse, H.V. 1960. The controlling element in sex chromosome behavior in Sciara. Genetics 45: 1429–1443.

    Google Scholar 

  • DeChiara, T.M., Robertson, E.J. and Efstradiatis, A. 1991. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64: 849–859.

    PubMed  Google Scholar 

  • Dellaporta, S.L., Greenblatt, I.M., Kermicle, J.L., Hicks, J.B. and Wessler, S.R. 1988. Molecular cloning of the maize R-Nj allele by transposon tagging with Ac. In: J.P. Gustafson and R. Appels (Eds.) Chromosome Structure and Function, 18th Stadler Genetics Symposium, Plenum, New York, pp. 263–282.

    Google Scholar 

  • Di Fonzo, N., Fornasari, E., Salamini, F., Reggiani, R. and Soave, C. 1980. Interaction of maize mutants floury-2 and opaque-7 with opaque-2 in the synthesis of endosperm proteins. J. Hered. 71: 397–402.

    Google Scholar 

  • Dooner, H.K., Robbins, T.P. and Jorgensen, R.A. 1991. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25: 173–199.

    PubMed  Google Scholar 

  • Eggleston, W.B., Alleman, M. and Kermicle, J.L. 1995. Molecular organization and bases for germinal instability in R-stippled maize. Genetics 141: 347–360.

    PubMed  Google Scholar 

  • Feil, R. and Khosla, S. 1999. Genomic imprinting in mammals: an interplay between chromatin and DNA methylation? Trends Genet. 15: 431–435.

    PubMed  Google Scholar 

  • Feinberg, A.P. 1993. Genomic imprinting and gene inactivation in cancer. Nature Genet. 4: 110–113.

    PubMed  Google Scholar 

  • Finnegan, E.J., Brettell R.I.S. and Dennis, E.S. 1993. The role of DNA methylation in the regulation of plant gene expression. In: J.P. Jost and H.P. Saluz (Eds.) DNA Methylation: Molecular Biology and Biological Significance, Birkhäuser Verlag, Basel. pp. 218–261.

    Google Scholar 

  • Forejt, J. and Gregorová S. 1992. Genetic analysis of genomic imprinting: an imprintor-1 gene controls inactivation of the paternal copy of the mouse Tme locus. Cell 70: 443–450.

    PubMed  Google Scholar 

  • Fuyama, Y. 1984. Gynogenesis in Drosophila melanogaster. Jpn. J. Genet. 59: 91–96.

    Google Scholar 

  • Gavazzi, G., Dolfini, S., Allegra, D., Castiglioni, P., Todesco, G. and Hoxha, M. 1997. Dap (Defective aleurone pigmentation) mutations affect maize aleurone development. Mol. Gen. Genet. 256: 223–230.

    PubMed  Google Scholar 

  • Golic, K.G., Golic, M.M. and Pimpinelli, S. 1998. Imprinted control of gene activity in Drosophila. Curr. Biol. 8: 1273–1276.

    PubMed  Google Scholar 

  • Gillespie, L.L. and Armstrong, J.B. 1981. Suppression of first cleavage in the Mexican axolotyl (Ambystoma mexicanum) by heat shock or hydrostatic pressure. J. Exp. Zool. 218: 441–445.

    PubMed  Google Scholar 

  • Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M.A., and Gagliano, W.B. 1998. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280: 446–450.

    PubMed  Google Scholar 

  • Haig, D. and Westoby, M. 1989. Parent specific gene expression and the triploid endosperm. Am. Nat. 134: 147–155.

    Google Scholar 

  • Hall, J.G. 1990. How imprinting is relevant to human disease. Development Suppl.: 141–148.

  • Harada, K. and Buss, E.G. 1981. The chromosomes of turkey embryos during early stages of parthenogenetic development. Genetics 98: 335–345.

    PubMed  Google Scholar 

  • Huang, B.-Q. and Sheridan, W.F. 1996. Embryo sac development in the maize indeterminate gametophyte-1 mutant: abnormal nuclear behavior and defective microtubule organization. Plant Cell 8: 1391–1407.

    PubMed  Google Scholar 

  • Hurst, L.D. and McVean, G.T. 1998. Do we understand the evolution of genomic imprinting? Curr. Opin. Genet. Dev. 8: 701–708.

    PubMed  Google Scholar 

  • Jacobs, P.A., Wilson, C.M., Sprenkle, J.A., Rosen Shein, N.B. and Migeon, B.R. 1980. Mechanism of origin of complete hydatidiform moles. Nature 286: 714–716.

    PubMed  Google Scholar 

  • Jiang, Y.-H., Tsai, T.-F., Bressler, J. and Beaudet, A.L. 1998. Imprinting in Angelman and Prader-Willi syndromes. Curr. Opin. Genet. Dev. 8: 334–342.

    PubMed  Google Scholar 

  • Junien, C. 1992. Beckwith-Wiedemann syndrome tumorigenesis and imprinting. Curr. Opin. Genet. Dev. 2: 431–438.

    PubMed  Google Scholar 

  • Karpen, G.H. and Spradling, A.C. 1990. Reduced DNA polytenization of a minichromosome region undergoing position effect variegation in Drosophila. Cell 63: 97–107.

    PubMed  Google Scholar 

  • Kelsey, G. 1999. The hows and whys of imprinting. Trends Genet. 16: 15–16.

    Google Scholar 

  • Kermicle, J.L. 1969. Androgenesis conditioned by a mutation in maize. Science 116: 1422–1424.

    Google Scholar 

  • Kermicle, J.L. 1970. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66: 69–85.

    Google Scholar 

  • Kermicle, J.L. 1978. Imprinting of gene action in maize endosperm. In: D.B. Walden (Ed.)Maize Breeding and Genetics, Wiley, New York, pp. 357–371.

    Google Scholar 

  • Kermicle, J.L. and Alleman, M. 1990. Gametic imprinting in maize in relation to the angiosperm life cycle. Development Suppl.: 9–14.

  • Kermicle, J.L., Alleman, M., and Eggleston, W. 1995. Paramutation of the maize R gene depends on R gene copy number and arrangement. Genetics 141: 361–372.

    PubMed  Google Scholar 

  • Kimber, G. and Riley, G. 1963. Haploid angiosperms. Bot. Rev. 29: 480–509.

    Google Scholar 

  • Kimura, Y., Tateno, H., Handel, M.A. and Yanagimachi, R. 1998. Factors affecting meiotic and developmental competence of primary spermatocyte nuclei injected into mouse oocytes. Biol. Reprod. 59: 871–877.

    PubMed  Google Scholar 

  • Kinoshita, T., Yadegari, R., Harada, J.J., Goldberg, R.B. and Fischer, R.L. 1999. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11: 1945–1952.

    PubMed  Google Scholar 

  • Kiyosue, T., Ohad, N., Yadegari, R., Hannon, M., Dinneny, J., Wells, D., Katz, A., Margossian, L., Harada, J.J., Goldberg, R.B. and Fischer, R.L. 1999. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 4186–4191.

    PubMed  Google Scholar 

  • Komma, D.J. and Endow, S.A. 1995. Haploidy and androgenesis in Drosophila. Proc. Natl. Acad. Sci. USA 92: 11884–11888.

    PubMed  Google Scholar 

  • Kono, T., Obata, Y., Yoshimzu, T., Nakahara, T. and Carroll, H. 1996. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nature Genet. 13: 91–94.

    PubMed  Google Scholar 

  • Kooter, J.M., Matzke, M.A. and Meyer, P. 1999. Listening to the silent genes: transgene silencing, gene regulation, and pathogen control. Trends Plant Sci. 4: 1360–1385.

    Google Scholar 

  • Lalande, M. 1996. Parental imprinting and human disease. Annu. Rev. Genet. 30: 173–195.

    PubMed  Google Scholar 

  • Leighton, P.A., Saam, J.R., Ingram, R.S. and Tilghman, S.M. 1996. Genomic imprinting in mice: its function and mechanism. Biol. Reprod. 54: 273–278.

    PubMed  Google Scholar 

  • Li, E., Beard, C. and Jaenisch, R. 1993. Role for DNA methylation in genomic imprinting. Nature 366: 362–365.

    PubMed  Google Scholar 

  • Lin, B.-Y. 1978. Structural modifications of the female gametophyte associated with the indeterminate gametophyte (ig) mutant in maize. Can. J. Genet. Cytol. 20: 249–257.

    Google Scholar 

  • Lin, B.-Y. 1982. Association of endosperm reduction with parental imprinting in maize. Genetics 100: 475–486.

    Google Scholar 

  • Lin, B.-Y. 1984. Ploidy barrier to endosperm development in maize. Genetics 107: 103–115.

    Google Scholar 

  • Lloyd, V.K., Sinclair, D.A. and Grigliatti, T.A. 1999. Genomic imprinting and position-effect variegation in Drosophila melanogaster. Genetics 151: 1503–1516.

    PubMed  Google Scholar 

  • Ludwig, S.R., Habera, L.F., Dellaporta, S.L. and Wessler, S.R. 1989. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. USA 86: 7092–7096.

    PubMed  Google Scholar 

  • Luff, B., Pawlowski, L. and Bender, J. 1999. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3: 505–511.

    Article  PubMed  Google Scholar 

  • Lund, G., Ciceri, P. and Viotti, A. 1995a. Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J. 8: 571–581.

    PubMed  Google Scholar 

  • Lund, G., Messing, J. and Viotti, A. 1995b. Endosperm-specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea mays L. Mol. Gen. Genet 246: 716–722.

    PubMed  Google Scholar 

  • Lyko, F., Brenton, J.D., Surani, M.A. and Paro, R. 1997. An imprinting element from the mouse H19 locus functions as a silencer in Drosophila. Nature Genet. 16: 171–173.

    PubMed  Google Scholar 

  • Macleod, D., Clark, V.H. and Bird, A. 1999. Absence of genomewide changes in DNA methylation during development of the zebrafish. Nature Genet. 23: 139–140.

    PubMed  Google Scholar 

  • Martin, C.C. and McGowan, R. 1995a. Genotype-specific modifiers of transgene methylation and expression in the zebrafish, Danio rerio. Genet. Res. 65: 21–28.

    PubMed  Google Scholar 

  • Martin, C.C. and McGowan, R. 1995b. Parent of origin specific effects on the methylation of a transgene in the zebrafish, Danio rerio. Dev. Genet. 17: 233–239.

    Google Scholar 

  • Martineit, C., Yoder, J.A., Taketo, T., Laird, D.W., Trasler, J.M. and Bestor, T.H. 1998. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125: 889–897.

    PubMed  Google Scholar 

  • Matzke, M.A., Matzke, A.J.M. and Eggleston, W.B. 1996. Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci. 1: 382–388.

    Google Scholar 

  • Matzke, A.J.M., Neuhuber, F., Park Y.-D., Ambros, P.F. and Matzke, M.A. 1994. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244: 219–229.

    PubMed  Google Scholar 

  • McGrath, J. and Solter, D. 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179–183.

    PubMed  Google Scholar 

  • Monk, M. 1988. Genomic imprinting. Genes Dev. 2: 921–925.

    PubMed  Google Scholar 

  • Moore, T. and Haig, D. 1991. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7: 45–49.

    PubMed  Google Scholar 

  • Muller, H.J. 1958. An androgenic homozygous male. Drosophila Inf. Serv. 61: 215.

    Google Scholar 

  • Neuffer, M.G., Chang, M.-T., Clark, J.K. and Sheridan, W.F. 1986. The genetic control of maize kernel development. In: J.C. Shannon, D.P. Knievel and C.D. Boyer (Eds.) Regulation of Carbon and Nitrogen Reduction and Utilization in Maize, American Society of Plant Physiologists, pp. 35–50.

  • Neumann, B., Kubicka, P. and Barlow, D.P. 1995. Characteristics of imprinted genes. Nature Genet. 9: 12–13, erratum 9: 451.

    PubMed  Google Scholar 

  • Nicholls, R.D. 1998. Genomic imprinting and uniparental disomy in Angelman and Prader-Willi syndromes: a review. Am. J. Med. Genet. 46: 16–25.

    Google Scholar 

  • Nitch, J.P. 1969. Experimental androgenesis in Nicotiana. Phytomorphology 19: 389–404.

    Google Scholar 

  • Nur, U. 1970. Translocations between eu-and heterochromatic chromosome, and spermatocytes lacking a heterochromatic set in male mealy bugs. Chromosoma 29: 42–61.

    PubMed  Google Scholar 

  • Nur, U. 1990. Heterochromatization and euchromatization of whole genomes in scale insects (Coccoidea: Homoptera). Development Suppl.: 29–34.

  • Obata, Y., Kaneko-Ishino, T., Koide, T., Takai, Y., Ueda, T., Domeki, I., Shiroishi, T., Ishino, F. and Kono, T. 1998. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during development. Development 125: 1553–1560.

    PubMed  Google Scholar 

  • Ogura, A., Suzuki, O., Tanemura, K., Mochida, K., Kobayashi, Y., Matsuda, J. 1998. Development of normal mice from metaphase I oocytes fertilized with primary spermatocytes. Proc. Natl. Acad. Sci. USA 95: 5611–5615.

    PubMed  Google Scholar 

  • Pearsall, R.S., Plass, C., Romano, M.A., Garrick, M.D., Shibata, H., Hayashizaki, Y. and Held, W.A. 1999. A direct repeat sequence at the Rasgrf1 locus and imprinted expression. Genomics 55: 194–201.

    PubMed  Google Scholar 

  • Perrot, G.H. and Cone, K.C. 1989. Nucleotide sequence of the maize R-S gene. Nucl. Acids Res. 17: 8003.

    PubMed  Google Scholar 

  • Razin, A. and Cedar, H. 1994. DNA methylation and genomic imprinting. Cell 77: 473–476.

    PubMed  Google Scholar 

  • Reik, W. and Walter, J. 1998. Imprinting mechanisms in mammals. Curr. Opin. Gen. Dev. 8: 154–164.

    Google Scholar 

  • Robbins, T.P., Walker, E.L., Kermicle, J.L., Alleman, M. and Dellaporta, S.L. 1991. Meiotic instability of the R-r complex arising from displaced intragenic exchange and intrachromosomal rearrangement. Genetics 129: 271–283.

    PubMed  Google Scholar 

  • Sarkar, K.R. and Coe, E.H. Jr. 1966. A genetic analysis of the origin of maternal haploids in maize. Genetics 54: 453–464.

    Google Scholar 

  • Schwartz, D. 1965. Regulation of gene action in maize. In: S.V. Geerst (Ed.) Genetics Today, Pergamon, Oxford, Pergamon, pp. 131–135.

    Google Scholar 

  • Scott, R.J., Spielman, M., Bailey, J. and Dickinson, H.G. 1998. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125: 3329–3341.

    PubMed  Google Scholar 

  • Sharman, G.B. 1971. Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230: 231–232.

    PubMed  Google Scholar 

  • Shemer, R., Birger, Y., Riggs, A.D. and Razin, A. 1997. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc. Natl. Acad. Sci. USA 94: 10267–10272.

    PubMed  Google Scholar 

  • Solter, D. 1988. Differential imprinting and expression of maternal and paternal genomes. Annu. Rev. Genet. 22: 127–146.

    PubMed  Google Scholar 

  • Spencer, H.G. and Williams, M.J.M. 1997. The evolution of genomic imprinting: two modifier-locus models. Theor. Pop. Biol. 51: 23–35.

    Google Scholar 

  • Spofford, J.B. 1959. Parental control of position-effect variegation. I. Parental heterochromatin and expression of the white locus in compound-X Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 45: 1003–1007.

    Google Scholar 

  • Spofford, J.B. 1961. Parental control of position-effect variegation. II. Effect of sex of parent contributing white-mottled rearrangement in Drosophila melanogaster. Genetics 46: 1151–1167.

    PubMed  Google Scholar 

  • Streisinger, G., Walker, C., Dower, N., Knauber, D. and Singer, F. 1981. Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 281: 293–296.

    Google Scholar 

  • Surani, M.A. 1998. Imprinting and the initiation of gene silencing in the germ line. Cell 93: 309–312.

    PubMed  Google Scholar 

  • Surani, M.A.H. and Barton, S.C. 1983. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222: 1034–1036.

    PubMed  Google Scholar 

  • Swain, J.L., Stewart, T.A. and Leder, P. 1987. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50: 719–727.

    PubMed  Google Scholar 

  • Szabo, P.E. and Mann, J.R. 1995. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev. 9: 1857–1868.

    PubMed  Google Scholar 

  • Tada, M., Tada, T., Lefebvre, L., Barton, S.C. and Surani, M.A. 1997. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16: 6510–6520.

    PubMed  Google Scholar 

  • Takagi, N. and Sasaki, M. 1975. Preferential inactivation of the paternally derived X chromosome in the extra embryonic membranes of the mouse. Nature 256: 640–642.

    PubMed  Google Scholar 

  • Tilghman, S.M. 1999. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96: 185–193.

    PubMed  Google Scholar 

  • Urieli-Shoval, S., Gruenbaum, Y., Sedat, J. and Razin, A. 1982. The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett. 146: 148–152.

    PubMed  Google Scholar 

  • Vielle-Calzada, J.-P., Thomas, J., Spillane, C., Coluccio, A., Hoeppner, M.A. and Grossniklaus, U. 1999. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev. 13: 2971–2982.

    PubMed  Google Scholar 

  • Vongs, A., Kakutani, T., Martienssen, R.A. and Richards, E.J. 1993. Arabidopsis thaliana DNA methylation mutants. Science 260: 1926–1928.

    PubMed  Google Scholar 

  • Walker, E.L. 1998. Paramutation of the r1 locus of maize is associated with increased cytosine methylation. Genetics 148: 1973–1981.

    PubMed  Google Scholar 

  • Walker, E.L., Robbins, T.P., Bureau, T.E., Kermicle, J. and Dellaporta, S.J. 1995. Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex. EMBO J. 14: 2350–2363.

    PubMed  Google Scholar 

  • West, J.D., Frels, W.I. and Chapman, V.M. 1977. Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12: 873–882.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alleman, M., Doctor, J. Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol 43, 147–161 (2000). https://doi.org/10.1023/A:1006419025155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006419025155

Navigation