Skip to main content
Log in

Angiogenesis in Transgenic Models of Multistep Carcinogenesis

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The histopathology and the epidemiology of human cancers, as well as studies of animal models of tumorigenesis, have led to a widely accepted notion that multiple genetic and epigenetic changes have to accumulate for progression to malignancy. Formation of new blood vessels (tumor angiogenesis) has been recognized, in addition to proliferative capabilities and to the ability to down-modulate cell death (apoptosis), as essential for the progressive growth and expansion of solid tumors beyond microscopic sizes of about 1–2 mm in diameter. Mice overexpressing activated forms of oncogenes or carrying targeted mutations in tumor suppressor genes have proven extremely useful for to linking the function of these genes with specific tumor processes; the interbreeding of these mice let us study the extent of cooperativity between different genetic lesions in disease progression, leading to a greater understanding of multi-stage nature of tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Risau W, Flamme I: Vasculogenesis. Annu Rev Cell Dev Biol 11: 73-91, 1995

    Google Scholar 

  2. Flamme I, von Reutern M, Drexler HC, Syed Ali S, Risau W: Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol 171: 399-414, 1995

    Google Scholar 

  3. Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan Ling T, Keshet E: Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15: 4738-4747, 1995

    Google Scholar 

  4. Breier G, Clauss M, Risau W: Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn 204: 228-239, 1995

    Google Scholar 

  5. Kremer C, Breier G, Risau W, Plate KH: Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57: 3852-3859, 1997

    Google Scholar 

  6. Hobson B, Denekamp J: Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49: 405-413, 1984

    Google Scholar 

  7. Parangi S, O'Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J, Hanahan D: Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA, 93: 2002-2007, 1996

    Google Scholar 

  8. Weindel K, Moringlane JR, Marme D, Weich HA: Detection and quantification of vascular endothelial growth factor/vascular permeability factor in brain tumor tissue and cyst fluid: the key to angiogenesis? Neurosurgery 35: 439-448, 1994

    Google Scholar 

  9. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature 359: 843-845, 1992

    Google Scholar 

  10. Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845-848, 1992

    Google Scholar 

  11. Plate KH, Breier G, Weich HA, Mennel HD, Risau W: Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59: 520-529, 1994

    Google Scholar 

  12. Hatva E, Kaipainen A, Mentula P, Jaaskelainen J, Paetau A, Haltia M, Alitalo K: Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 146: 368-378, 1995

    Google Scholar 

  13. Stratmann A, Risau W, Plate KH: Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis [see comments]. Am J Pathol 153: 1459-1466, 1998

    Google Scholar 

  14. Weissenberger J, Steinbach JP, Malin G, Spada S, Rulicke T, Aguzzi A: Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene 14: 2005-2013, 1997

    Google Scholar 

  15. Theurillat JP, Hainfellner J, Maddalena A, Weissenberger J, Aguzzi A: Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. Am J Pathol 154: 581-590, 1999

    Google Scholar 

  16. Hanahan D: Transgenic mice as probes into complex systems. Science (AAAS) 246: 1265-1275, 1989

    Google Scholar 

  17. Hanahan D: Heritable formation of pancreatic betacell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315: 115-122, 1985

    Google Scholar 

  18. Hanahan D, Christofori G, Naik P, Arbeit J: Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 32a: 2386-2393, 1996

    Google Scholar 

  19. Rovigatti U, Afanasyeva T, Brandner S, Hainfellner JA, Kiess M, Maddalena A, Malin G, Rulicke T, Steinbach J, Weissenberger J, Aguzzi A: Transgenic mice as research tools in neurocarcinogenesis. J Neurovirol 4: 159-174, 1998

    Google Scholar 

  20. Ludlow JW: Interactions between SV40 large-tumor antigen and the growth suppressor proteins pRB and p53. FASEB J 7: 866-871, 1993

    Google Scholar 

  21. Alpert S, Hanahan D, Teitelman G: Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53: 295-308, 1988

    Google Scholar 

  22. Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58-61, 1989

    Google Scholar 

  23. Arbeit JM, Munger K, Howley PM, Hanahan D: Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol 68: 4358-4368, 1994

    Google Scholar 

  24. Coussens LM, Hanahan D, Arbeit JM: Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am J Pathol 149: 1899-1917, 1996

    Google Scholar 

  25. Lacey M, Alpert S, Hanahan D: Bovine papillomavirus genome elicits skin tumours in transgenic mice. Nature 322: 609-612, 1986

    Google Scholar 

  26. Rak J, Filmus J, Kerbel RS: Reciprocal paracrine interactions between tumour cells and endothelial cells: the 'angiogenesis progression' hypothesis. Eur J Cancer 32a: 2438-2450, 1996

    Google Scholar 

  27. Kinzler KW, Vogelstein B: Life (and death) in a malignant tumour [news; comment]. Nature 379: 19-20, 1996

    Google Scholar 

  28. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours [see comments]. Nature 379: 88-91, 1996

    Google Scholar 

  29. Van Meir EG, Polverini PJ, Chazin VR, Su Huang HJ, de Tribolet N, Cavenee WK: Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 8: 171-176, 1994

    Google Scholar 

  30. Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E: Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1: 1024-1028, 1995

    Google Scholar 

  31. Rak J, Mitsuhashi Y, Erdos V, Huang SN, Filmus J, Kerbel RS: Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by mutant c-H-ras oncogene expression. J Cell Biol 131: 1587-1598, 1995

    Google Scholar 

  32. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D: Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem 270: 25915-25919, 1995

    Google Scholar 

  33. Volpert OV, Stellmach V, Bouck N: The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat 36: 119-126, 1995

    Google Scholar 

  34. Parangi S, O'Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J, Hanahan D: Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA 93: 2002-2007, 1996

    Google Scholar 

  35. Christofori G, Naik P, Hanahan D: Deregulation of both imprinted and expressed alleles of the insulin-like growth factor 2 gene during beta-cell tumorigenesis. Nat Genet 10: 196-201, 1995

    Google Scholar 

  36. Borsum T: Biochemical properties of vascular endothelial cells. Virchows Arch B Cell Pathol Incl Mol Pathol 60: 279-286, 1991

    Google Scholar 

  37. Levy AP, Levy NS, Loscalzo J, Calderone A, Takahashi N, Yeo KT, Koren G, Colucci WS, Goldberg MA: Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res 76: 758-766, 1995

    Google Scholar 

  38. Koochekpour S, Merzak A, Pilkington GJ: Extracellular matrix proteins inhibit proliferation, upregulate migration and induce morphological changes in human glioma cell lines. Eur J Cancer 31a: 375-380, 1995

    Google Scholar 

  39. Stavri GT, Hong Y, Zachary IC, Breier G, Baskerville PA, Yla Herttuala S, Risau W, Martin JF, Erusalimsky JD: Hypoxia and platelet-derived growth factor-BB synergistically upregulate the expression of vascular endothelial growth factor in vascular smooth muscle cells. FEBS Lett 358: 311-315, 1995

    Google Scholar 

  40. Wang XJ, Liefer KM, Tsai S, O'Malley BW, Roop DR: Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in the epidermis. Proc Natl Acad Sci USA 96: 8483-8488, 1999

    Google Scholar 

  41. Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T, Kerbel RS: Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55: 4575-4580, 1995

    Google Scholar 

  42. Filmus J, Shi W, Spencer T: Role of transforming growth factor alpha (TGF-alpha) in the transformation of rastransfected rat intestinal epithelial cells. Oncogene 8: 1017-1022, 1993

    Google Scholar 

  43. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner JW 2nd, Cordon Cardo C, Yancopoulos GD, DePinho RA: Essential role for oncogenic Ras in tumour maintenance. Nature 400: 468-472, 1999

    Google Scholar 

  44. White E: Life, death, and the pursuit of apoptosis. Genes Dev 10: 1-15, 1996

    Google Scholar 

  45. Raff MC: Social controls on cell survival and cell death. Nature 356: 397-400, 1992

    Google Scholar 

  46. Ucker DS, Obermiller PS, Eckhart W, Apgar JR, Berger NA, Meyers J: Genome digestion is a dispensable consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol Cell Biol 12: 3060-3069, 1992

    Google Scholar 

  47. Stern MC, Duran HA, McKenna EA, Conti CJ: Increased apoptosis during papilloma development in mice susceptible to tumor progression. Mol Carcinog 20: 137-142, 1997

    Google Scholar 

  48. Naik P, Karrim J, Hanahan D: The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev 10: 2105-2116, 1996

    Google Scholar 

  49. Naik P, Christofori G, Hanahan D: Insulin-like growth factor II is focally up-regulated and functionally involved as a second signal for oncogene-induced tumorigenesis. Cold Spring Harb Symp Quant Biol 59: 459-470, 1994

    Google Scholar 

  50. Coussens LM, Hanahan D, Arbeit JM: Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. AmJ Pathol 149: 1899-1917, 1996

    Google Scholar 

  51. Pan H, Griep AE: Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev 8: 1285-1299, 1994

    Google Scholar 

  52. Pan H, Griep AE: Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev 9: 2157-2169, 1995

    Google Scholar 

  53. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D: Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284: 808-812, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Angelo, M.G., Afanasieva, T. & Aguzzi, A. Angiogenesis in Transgenic Models of Multistep Carcinogenesis. J Neurooncol 50, 89–98 (2000). https://doi.org/10.1023/A:1006418723103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006418723103

Navigation