Skip to main content
Log in

The dual function steroid receptor coactivator/ubiquitin protein-ligase integrator E6-AP is overexpressed in mouse mammary tumorigenesis

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Steroid receptor coactivator and corepressor proteins are important mediators of steroid receptor function. Changes in the expression or activity of these limiting cofactors can contribute to the etiology of steroidal cancers. Using a mouse mammary model of multistage tumorigenesis we have examined whether the expression of select steroid receptor coactivators is altered. The 10 kb transcript of the novel dual function steroid receptor coactivator/ubiquitin protein-ligase integrator E6-AP is overexpressed 2.5–4.5 fold in the mammary tumors but not in the precursor steps of tumorigenesis; that is, immortal ductal and alveolar hyperplastic outgrowths. The over expression is striking because the 10 kb transcript is expressed to variable levels in other wild type tissues like the uterus, ovary, testis, kidney and brain but is undetectable in normal virgin mammary gland and the prostate gland. The E6-AP overexpression in the mammary tumors is substantiated by western blot analysis and immunohistochemical analysis. Absence of ER and PR in these tumors in the presence of high levels of E6-AP could contribute to steroid receptor-independent function and tumorigenesis. There is no obvious correlation between p53 (a well-characterized substrate of E6-AP) status (wt vs. mutant) and levels of E6-AP in the mouse mammary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love S, Parker B, Ames M, Taylor C, Gilden R, Figlin RA: Practice guidelines for breast cancer. Cancer J Sci Am 2: S7, 1996

    Google Scholar 

  2. Parker SL, Tong T, Bolden S, Wingo PA: Cancer statistics, [published erratum appears in CA Cancer J Clin 1997 Mar- Apr; 47(2): 68]. CA Cancer J Clin 47: 5–27, 1997

    Google Scholar 

  3. Kelsey JL, Gammon MD: The epidemiology of breast cancer. CA Cancer J Clin 41: 146–165, 1991

    Google Scholar 

  4. Allred DC: Biological and genetic features of in situ breast cancer. In: Silverstein MJ (ed) Ductal Carcinoma In Situ of the Breast. Williams and Wilkens, Baltimore, 1997, pp 37–49

    Google Scholar 

  5. Varmus HE, Godley LA, Roy S, Taylor IC, Yuschenkoff L, Shi YP, Pinkel D, Gray J, Pyle R, Aldaz CM et al.: Defining the steps in a multistep mouse model for mammary carcinogenesis. Cold Spring Harb Symp Quant Biol 59: 491–499, 1994

    Google Scholar 

  6. Medina D: Mammary tumors in mice. In: Foster HL, Small JD, Fox JG (eds) The Mouse in Biological Research. Vol. IV, Academic Press, New York, 1982, pp 373–396

    Google Scholar 

  7. Medina D: Preneoplasia in mammary tumorigenesis. In: Dickson R, Lippman M (eds) Mammary Tumor Cell Cycle, Differentiation and Metastasis, Kluwer Academic Publishers, New York, 1996, pp 37–69

    Google Scholar 

  8. Neville M, Medina D: Estrogens and progestins in mammary development and neoplasia. Mammary Gland Biol Neoplasia 3: 1–106, 1998

    Google Scholar 

  9. Tsai MJ, O'Malley BW: Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63: 451–486, 1994

    Google Scholar 

  10. Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ, O'Malley BW: Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52: 141–164, 1997

    Google Scholar 

  11. McKenna N, Lanz R, O'Malley B: Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20: 321–344, 1999

    Google Scholar 

  12. McKenna NJ, Xu J, Nawaz Z, Tsai SY, Tsai MJ, O'Malley BW: Nuclear receptor coactivators: multiple enzymes, multiple complexes, multiple functions. J Steroid Biochem Mol Biol 69: 3–12, 1999

    Google Scholar 

  13. Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S: Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19: 5363–5372, 1999

    Google Scholar 

  14. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O'Malley BW: Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198, 1997

    Google Scholar 

  15. Fryer CJ, Archer TK: Chromatin remodelling by the glucocorticoid receptor requires the BRGI complex. Nature 393: 88–91, 1998

    Google Scholar 

  16. Klugbauer S, Rabes HM: The transcription coactivator HTIFI and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 18: 4388–4393, 1999

    Google Scholar 

  17. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR: Regulation of transcription by a protein methyltransferase. Science 284: 2174–2177, 1999

    Google Scholar 

  18. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O'Malley BW: A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC1 complex. Cell 97: 17–27, 1999

    Google Scholar 

  19. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O'Malley BW: Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279: 1922–1925, 1998

    Google Scholar 

  20. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS: AIBI, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277: 965–968, 1997

    Google Scholar 

  21. Medina D, Kittrell FS, Liu YJ, Schwartz M: Morphological and functional properties of TM preneoplastic mammary outgrowths. Cancer Res 53: 663–667, 1993

    Google Scholar 

  22. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE: Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55: 619–625, 1988

    Google Scholar 

  23. Medina D, Warner MR: Mammary tumorigenesis in chemical carcinogen-treated mice. IV. Induction of mammary ductal hyperplasias. J Natl Cancer Inst 57: 331–337, 1976

    Google Scholar 

  24. Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A: Alpha-inhibin is a tumour suppressor gene with gonadal specificity in mice. Nature 360: 313–319, 1992

    Google Scholar 

  25. Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM: Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92: 3439–3443, 1995

    Google Scholar 

  26. Daniels PR, Sanders CM, Coulson P, Maitland NJ: Molecular analysis of the interaction between HPV type 16 E6 and human E6-associated protein. FEBS Lett 416: 6–10, 1997

    Google Scholar 

  27. Daniels PR, Sanders CM, Maitland NJ: Characterization of the interactions of human papillomavirus type 16 E6 with p53 and E6-associated protein in insect and human cells. J Gen Virol 79: 489–499, 1998

    Google Scholar 

  28. Kumar S, Kao WH, Howley PM: Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem 272: 13548–13554, 1997

    Google Scholar 

  29. Hatakeyama S, Jensen JP, Weissman AM: Subcellular localization and ubiquitin conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases. J Biol Chem 272: 15085–15092, 1997

    Google Scholar 

  30. Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ, O'Malley BW: The Angelman syndromeassociated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19: 1182–1189, 1999

    Google Scholar 

  31. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM: A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92: 5249, 1995

    Google Scholar 

  32. Rougeulle C, Glatt H, Lalande M: The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain [letter]. Nat Genet 17: 14–15, 1997

    Google Scholar 

  33. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM: The HPV-16 E6 and E6-AP complex functions as a ubiquitinprotein ligase in the ubiquitination of p53. Cell 75: 495–505, 1993

    Google Scholar 

  34. Huibregtse JM, Scheffner M, Howley PM: A Cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10: 4129–4135, 1991

    Google Scholar 

  35. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX, Kumar S, Howley PM, Livingston DM: p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 2: 405–415, 1998

    Google Scholar 

  36. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation (see comments). Neuron 21: 799–811, 1998

    Google Scholar 

  37. Berns EM, van Staveren IL, Klijn JG, Foekens JA: Predictive value of SRC-1 for tamoxifen response of recurrent breast cancer. Breast Cancer Res Treat 48: 87–92, 1998

    Google Scholar 

  38. Bautista S, Valles H, Walker RL, Anzick S, Zeillinger R, Meltzer P, Theillet C: In breast cancer, amplification of the steroid receptor coactivator gene AIBI is correlated with estrogen and progesterone receptor positivity. Clin Cancer Res 4: 2925–2929, 1998

    Google Scholar 

  39. Carapeti M, Aguiar RC, Goldman JM, Cross NC: A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91: 3127–3133, 1998

    Google Scholar 

  40. Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL: Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92: 2118–2122, 1998

    Google Scholar 

  41. Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ et al.: Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP (see comments). Nature 376: 348–351, 1995

    Google Scholar 

  42. Kishino T, Lalande M, Wagstaff J: UBE3/E6-AP mutations cause Angelman syndrome. Nature Genet 15: 70–73, 1993

    Google Scholar 

  43. Matsuura T, Sutcliffe JS, Fang P, Galjaard R-J, Jiang YH, Benton CS, Rommens JM, Beaudet AL: De novo truncating mutations in E6-AP ubiuitin protein ligase gene (UBE3A) in Angelman syndrome. Nature Genet 15: 74–77, 1993

    Google Scholar 

  44. Sutcliffe JS, Jiang YH, Galijaard RJ, Matsuura T, Fang P, Kubota T, Christian SL, Bressler J, Cattanach B, Ledbetter DH, Beaudet AL: The E6-Ap ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region (letter). Genome Res 7: 368–377, 1997

    Google Scholar 

  45. Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, Heery D, Gronemeyer H, Chambon P, Losson R: The N-terminal part of TIF1, a putative mediator of the liganddependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 14: 2020–2033, 1995

    Google Scholar 

  46. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW: Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95: 2920–2925, 1998

    Google Scholar 

  47. Schroen DJ, Chen JD, Vincenti MP, Brinckerhoff CE: The nuclear receptor corepressor SMRT inhibits interstitial collagenase (MMP-1) transcription through an HRE-independent mechanism. Biochem Biophys Res Commun 237: 52–58, 1997

    Google Scholar 

  48. Moghal N, Neel BG: Evidence for impaired retinoic acid receptor-thyroid hormone receptor AF-2 cofactor activity in human lung cancer. Mol Cell Biol 15: 3945–3959, 1995

    Google Scholar 

  49. Miyamoto H, Yeh S, Wilding G, Chang C: Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 Cells. Proc Natl Acad Sci USA 95: 7379–7384, 1998

    Google Scholar 

  50. Lee HY, Dawson MI, Claret FX, Chen JD, Walsh GL, Hong WK, Kurie JM: Evidence of a retinoid signaling alteration involving the activator protein 1 complex in tumorigenic human bronchial epithelial Cells and non-small Cell lung cancer Cells. Cell Growth Differ 8: 283–291, 1997

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivaraman, L., Nawaz, Z., Medina, D. et al. The dual function steroid receptor coactivator/ubiquitin protein-ligase integrator E6-AP is overexpressed in mouse mammary tumorigenesis. Breast Cancer Res Treat 62, 185–195 (2000). https://doi.org/10.1023/A:1006410111706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006410111706

Navigation