Skip to main content
Log in

Influence of nutrients and carbohydrate supply on the phenol composition of apple shoot cultures

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Apple shoot cultures accumulate phenolic acids, flavonols, catechins, and procyanidins. Increasing the sucrose content and reducing the macronutrient content of culture media both resulted in an enhanced content of phenolic substances. The qualitative composition of the substances was affected as well. Morphology of the shoots, preculture and time of sampling in the subculture interval influenced the reaction pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiot MJ (1990) Les composés phénoliques de la pomme. Intérêts agronomiques et conséquences technologiques. 9o Colloque sur les recherches fruitères (pp. 279–289). Avignon

  • Barnes EH& Williams EB (1961) The role of phloridzin in the hostparasite of apple scab disease. Can. J. Microbiol. 7: 525–534

    Google Scholar 

  • Bauer H, Treutter D, Schmid PPS, Schmitt E& Feucht W (1989) Specific accumulation of o-diphenols in stressed leaves of Prunus avium. Phytochem. 28: 1363–1364

    Google Scholar 

  • Bauer H& Treutter D (1990) Identification of Pelargonium-cultivars by phenolic ‘fingerprints'. II. Cultivar identification by HPLCanalysis of leaf phenols combined with discriminant analysis. Gartenbauwiss. 55: 187–191

    Google Scholar 

  • Bongue-Bartelsman M& Philipps DA (1995) Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol. Biochem. 33: 539–546

    Google Scholar 

  • Bryant JP, Chapin FS, Reichardt PB& Clausen TP (1987) Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia 72: 510–514

    Google Scholar 

  • Del Moral R (1972) On the variability of chlorogenic acid concentration. Oecologia 9: 289–300

    Google Scholar 

  • DiCosmo F& Towers GHN (1983) Stress and secondary metabolism in cultured plant cells. In: Timmermann BN, Steelink C& Loewus FA (eds) Phytochemical Adaptions to Stress (pp. 97–176). Plenum Press, New York

    Google Scholar 

  • Estiarte M, Filella I, Serra J& Penuelas J (1994) Effects of nutrient and water stress on leaf phenolic content of peppers and susceptibility to generalist herbivore Helicoverpa armigera (Hubner). Oecologia 99: 387–391

    Google Scholar 

  • Feucht W& Schmid PPS (1988) Flavanols in needles of Abies alba in response to different rural sites. Angew. Botanik 62: 21–30

    Google Scholar 

  • Gershenzon J (1983) Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Timmermann BN, Steelink C& Loewus FA (eds) Phytochemical Adaptions to Stress (pp. 273–320). Plenum Press, New York

    Google Scholar 

  • Holowoczak J, Kuc J& Williams EB (1962) Metabolism of D-and L-phenylalanine in Malus related to susceptibility and resistance to Venturia inaequalis. Phytopath. 52: 1019–1023

    Google Scholar 

  • Kirkham DS (1957) The significance of polyphenolic metabolites of apple and pear in the host relation of Venturia inaequalis and Venturia pirina. J. Gen. Microbiol. 17: 491–504

    Google Scholar 

  • Koeppe DE, Southwick LM& Bittell JE (1976) The relationship of tissue chlorogenic acid concentrations and leaching of phenolics from sunflowers grown under varying phosphate nutrient conditions. Can. J. Bot. 54: 593–599

    Google Scholar 

  • Larsson S, Wiren A, Lundgren L& Ericsson T (1986) Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola (Coleoptera). OIKOS 47(2): 205–210

    Google Scholar 

  • Lewis NG& Yamamoto E (1989) Tannins – their place in plant metabolism. In: Hemingway RW& Karchesy JJ (eds) Chemistry and Significance of Condensed Tannins (pp. 23–46). Plenum Press, New York

    Google Scholar 

  • Mayr U (1995) Einfluß des Phenolstoffwechsels beim Apfel (Malus domestica) auf das Resistenzpotential gegen Apfelschorf (Venturia inaequalis). Ph.D. Thesis, Technical University of Munich

  • Mayr U, Fünfgelder S, Treutter D& Feucht W (1995a) Induction of phenol accumulation by pesticides under the control of environmental factors. Proc. European Foundation for Plant Pathology: 399–402

  • Mayr U, Treutter D, Santos-Buelga C, Bauer H& Feucht W (1995b) Developmental changes in the phenol concentrations of ‘Golden Delicious’ apple fruits and leaves. Phytochem. 38(5): 1151–1155

    Google Scholar 

  • Mayr U, Michalek S, Treutter D& Feucht W (1997) Phenolic compounds of apple and their relationship to scab resistance. J. Phytopath. 145: 69–75

    Google Scholar 

  • Michalek S, Mayr U, Treutter D, Lux-Endrich A, Gutmann M, Feucht W& Geibel M (1999) Role of flavan-3-ols in resistance of apple trees to Venturia inaequalis. Acta Hort. 484: 535–539

    Google Scholar 

  • Mori T& Sakurai M (1994) Production of anthocyanin from strawberry cell suspension cultures; effects of sugar and nitrogen. J. Food Sci. 59(3): 588–593

    Google Scholar 

  • Murashige T& Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497

    Google Scholar 

  • Nozzolillo C (1978) The effects of mineral nutrient deficiencies on the anthocyan pigmentation in vegetative tissues. Phytochem. Bull. 11: 48–54

    Google Scholar 

  • Oydvin J& Richardson DG (1987) A paper chromatographic survey of the phenol content of apple peel from scab resistant and scab susceptible genotypes. Norwegian J. Agr. Sci. 1: 7–13

    Google Scholar 

  • Pincinelli A, Dapena E& Mangas JJ (1995) Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary study. J. Agric. Food Chem. 43: 2273–2278

    Google Scholar 

  • Pritchard S, Peterson C, Runion GB, Prior S& Rogers H (1997) Atmospheric CO2 concentration, N availability, and water status affect patterns of ergastic substance deposition in longleaf pine (Pinus palustris Mill.) foliage. Trees 11(8): 494–503

    Google Scholar 

  • Raa J (1968) Polyphenols and natural resistance of apple leaves against Venturia inaequalis. Neth. J. Pl. Path. 74: 37–45

    Google Scholar 

  • Treutter D (1987) Modelluntersuchungen zur Akkumulation des Flavanons Prunin an Prunus-avium-Kalluskulturen. Gartenbauwiss. 52: 196–199

    Google Scholar 

  • Treutter D (1989) Chemical reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldehyde. J. Chromatogr. 467: 185–193

    Google Scholar 

  • Treutter D (2000) Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regulation (in press)

  • Treutter D, Galensa R, Feucht W& Schmid PPS (1985) Flavanone glucosides in callus and phloem of Prunus avium: Identification and stimulation of their synthesis. Physiol. Plant. 65: 95–101

    Google Scholar 

  • Treutter D& Feucht W (1988) Accumulation of the flavonoid prunin in Prunus avium/P. cerasus grafts and its possible involvement in the process of incompatibility. Acta Hortic. 227: 74–78

    Google Scholar 

  • Treutter D& Feucht W (1990) The pattern of flavan-3-ols in relation to scab resistance of apple cultivars. J. Hort. Sci. 65: 511–517

    Google Scholar 

  • Treutter D, Santos-Buelga C, Gutmann M& Kolodziej (1994) Identification of flavan-3-ols and procyanidins by HPLC and chemical reaction detection. J. Chromatogr. A 667: 290–297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Lux-Endrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lux-Endrich, A., Treutter, D. & Feucht, W. Influence of nutrients and carbohydrate supply on the phenol composition of apple shoot cultures. Plant Cell, Tissue and Organ Culture 60, 15–21 (2000). https://doi.org/10.1023/A:1006406527242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006406527242

Navigation