Skip to main content
Log in

MAP kinase pathways: molecular plug-and-play chips for the cell

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinase (MAPK) pathways transduce a large variety of external signals in mammals, unicellular eukaryotes, and plants. In recent years, plant MAPK pathways have attracted increasing interest resulting in the isolation of a large number of different components. Studies on the function of these components have revealed that MAPKs play important roles in the response to a broad variety of stresses, but also in the signaling of plant hormones and the cell cycle. Besides giving an update on recent results, the success and logic of MAPK-based signal transduction cascades is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abe, M.K., Kuo, W.L., Hershenson, M.B. and Rosner, M.R. 1999. Extracellular signal-regulated kinase 7 (ERK7), a novel ERK with a C-terminal domain that regulates its activity, its cellular localization, and cell growth. Mol Cell Biol 19: 1301–1312.

    Google Scholar 

  • Adam, A.L., Pike, S., Hoyos, M.E., Stone, J.M., Walker, J.C. and Novacky, A. 1997. Rapid and transient activation of myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora. Plant Physiol 115: 853–861.

    Google Scholar 

  • Alessi, D.R., Saito, Y., Campbell, D.G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C.J. and Cowley, S. 1994. Identification of the sites inMAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J 13: 1610–1619.

    Google Scholar 

  • Banno, H., Hirano, K., Nakamura, T., Irie, K., Nomoto, S., Matsumoto, K. and Machida, Y. 1993. NPK1, a tobacco gene that encodes a protein with a domain homologous to yeast BCK1, STE11, and Byr2 protein kinases. Mol Cell Biol 13: 4745–4752.

    Google Scholar 

  • Barizza, E., Lo Schiavo, F., Terzi, M. and Filippini, F. 1999. Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions. FEBS Lett 447: 191–194.

    Google Scholar 

  • Baudouin, E., Meskiene, I. and Hirt, H. 1999. Unsaturated fatty acids inhibit MP2C, a protein phosphatase 2C involved in the wound-induced MAP kinase pathway regulation. Plant J 20: 343–348.

    Google Scholar 

  • Bergey, D.R., Howe, G.A. and Ryan, C.A. 1996. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93: 12053–12058.

    Google Scholar 

  • Bögre, L., Calderini, O., Binarova, P., Mattauch, M., Till, S., Kiegerl, S., Jonak, C., Pollaschek, C., Barker, P., Huskisson, N.S., Hirt, H. and Heberle-Bors, E. 1999. A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11: 101–114.

    Google Scholar 

  • Bögre, L., Ligterink, W., Heberle-Bors, E. and Hirt, H. 1996. Mechanosensors in plants. Nature 383: 489–490.

    Google Scholar 

  • Bögre, L., Ligterink, W., Meskiene, I., Baker, P., Heberle-Bors, E. and Hirt, H. 1997. Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell 9: 75–83.

    Google Scholar 

  • Bowles, D.J. 1993. Local and systemic signals in the wound response. Semin Cell Biol 4: 103–111.

    Google Scholar 

  • Braam, J. and Davis, R.W. 1990. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60: 357–364.

    Google Scholar 

  • Calderini, O., Bogre, L., Vicente, O., Binarova, P., Heberle-Bors, E. and Wilson, C. 1998. A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci 111: 3091–3100.

    Google Scholar 

  • Cazale, A.C., Rouet-Mayer, M.A., Barbier-Brygoo, H., Mathieu, Y. and Lauriere, C. 1998. Oxidative burst and hypoosmotic stress in tobacco cell suspensions. Plant Physiol 116: 659–669.

    Google Scholar 

  • Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. and Ecker, J.R. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENEINSENSITIVE3 and related proteins. Cell 89: 1133–1144.

    Google Scholar 

  • Chu, B., Soncin, F., Price, B.D., Stevenson, M.A. and Calderwood, S.K. 1996. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271: 30847–30857.

    Google Scholar 

  • Clark, K.L., Larsen, P.B., Wang, X. and Chang, C. 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95: 5401–5406.

    Google Scholar 

  • Covic, L. and Lew, R.R. 1996. Arabidopsis thaliana cDNA isolated by functional complementation shows homology to serine/threonine protein kinases. Biochim Biophys Acta 1305: 125–129.

    Google Scholar 

  • Devitt, M.L. and Stafstrom, J.P. 1995. Cell cycle regulation during growth-dormancy cycles in pea axillary buds. Plant Mol Biol 29: 255–265.

    Google Scholar 

  • Dove, S.K., Cooke, F.T., Douglas, M.R., Sayers, L.G., Parker, P.J. and Michell, R.H. 1997. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390: 187–192.

    Google Scholar 

  • Duerr, B., Gawienowski, M., Ropp, T. and Jacobs, T. 1993. MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell 5: 87–96.

    Google Scholar 

  • Fanger, G.R., Gerwins, P., Widmann, C., Jarpe, M.B. and Johnson, G.L. 1997. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr Opin Genet Dev 7: 67–74.

    Google Scholar 

  • Farmer, E.E., Pearce, G. and Ryan, C.A. 1989. In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proc Natl Acad Sci USA 86: 1539–1542.

    Google Scholar 

  • Ferrell, J.E.J. 1996. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21: 460–466.

    Google Scholar 

  • Ferrell, J.E., Jr. 1998. How regulated protein translocation can produce switch-like responses. Trends Biochem Sci 23: 461–465.

    Google Scholar 

  • Ferrell, J.E., Jr. and Bhatt, R.R. 1997. Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 272: 19008–19016.

    Google Scholar 

  • Fordham-Skelton, A.P., Skipsey, M., Eveans, I.M., Edwards, R. and Gatehouse, J.A. 1999. Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains: expression during embryogenesis. Plant Mol Biol 39: 593–605.

    Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756.

    Google Scholar 

  • Gamble, R.L., Coonfield, M.L. and Schaller, G.E. 1998. Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95: 7825–7829.

    Google Scholar 

  • Garrington, T.P. and Johnson, G.L. 1999. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11: 211–218.

    Google Scholar 

  • Gartner, A., Nasmyth, K. and Ammerer, G. 1992. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev 6: 1280–1292.

    Google Scholar 

  • Gonzalez, F.A., Raden, D.L. and Davis, R.J. 1991. Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem 266: 22159–22163.

    Google Scholar 

  • Grill, E. and Himmelbach, A. 1998. ABA signal transduction. Curr Opin Plant Biol 1: 412–418.

    Google Scholar 

  • Gupta, R., Huang, Y., Kieber, J. and Luan, S. 1998. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. Plant J 16: 581–589.

    Google Scholar 

  • Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Derijard, B. and Davis, R.J. 1996. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15: 2760–2770.

    Google Scholar 

  • Gustin, M.C., Albertyn, J., Alexander, M. and Davenport, K. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62: 1264–1300.

    Google Scholar 

  • Hackett, R.M., Oh, S.A., Morris, P.C. and Grierson, D. 1998. A tomato MAP kinase kinase gene (accession no. AJ 000728) differentially regulated during fruit development, leaf senescence, and wounding. Plant Physiol 117: 1526–1526.

    Google Scholar 

  • Hardin, S.C. and Wolniak, S.M. 1998. Molecular cloning and characterization of maize ZmMEK1, a protein kinase with a catalytic domain homologous to mitogen-and stress-activated protein kinase kinases. Planta 206: 577–584.

    Google Scholar 

  • Haring, M.A., Siderius, M., Jonak, C., Hirt, H., Walton, K.M. and Musgrave, A. 1995. Tyrosine phosphatase signalling in a lower plant: cell-cycle and oxidative stress-regulated expression of the Chlamydomonas eugametos VH-PTP13 gene. Plant J 7: 981–988.

    Google Scholar 

  • Heider, H., Boschein, O. and Scharf, K.D. 1998. A heat-stress pulse inactivates a 50 kDa myelin basic protein kinase in tomato. Bot Acta 111: 398–401.

    Google Scholar 

  • Hirt, H. 2000. Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 97: 2405–2407.

    Google Scholar 

  • Hoyos, M.E., Zhang, S., Johal, G.S., Klessig, D.F., Hirt, H., Pike, S.M. and Novacky, A.J. 1998. Is harpin-activated protein kinase related to salicylic acid-or fungal elicitor-induced kinases? Plant Physiol Suppl: 46–47.

  • Hua, J. and Meyerowitz, E.M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261–271.

    Google Scholar 

  • Hunter, T. and Plowman, G.D. 1997. The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22: 18–22.

    Google Scholar 

  • Ichimura, K., Mizoguchi, T., Irie, K., Morris, P., Giraudat, J., Matsumoto, K. and Shinozaki, K. 1998. Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun 253: 532–543.

    Google Scholar 

  • Jabs, T., Tschöpe, M., Colling, C., Hahlbrock, K. and Scheel, D. 1997. Elicitor-stimulated ion fluxes and HO -2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94: 4800–4805.

    Google Scholar 

  • Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S. and Hirt, H. 1996. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93: 11274–11279.

    Google Scholar 

  • Jonak, C., Pay, A., Bogre, L., Hirt, H. and Heberle-Bors, E. 1993. The plant homologue of MAP kinase is expressed in a cell cycledependent and organ-specific manner. Plant J 3: 611–617.

    Google Scholar 

  • Jouannic, S., Hamal, A., Leprince, A.S., Tregear, J.W., Kreis, M. and Henry, Y. 1999. Characterisation of novel plant genes encoding MEKK/STE11 and RAF-related protein kinases. Gene 229: 171–181.

    Google Scholar 

  • Katsuta, J. and Shibaoka, H. 1992. Inhibition by kinase inhibitors of the development and the disappearance of the preprophase band of microtubules in tobacco BY-2 cells. J Cell Sci 103: 397–405.

    Google Scholar 

  • Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A. and Ecker, J.R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427–441.

    Google Scholar 

  • Knetsch, M.L.W., Wang, M., Snaar-Jagalska, B.E. and Heimovaara-Dijkstra, S. 1996. Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8: 1061–1067.

    Google Scholar 

  • Knight, M.R., Campbell, A.K., Smith, S.M. and Trewavas, A.J. 1991. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526.

    Google Scholar 

  • Kovtun, Y., Chiu, W.L., Zeng, W. and Sheen, J. 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716–720.

    Google Scholar 

  • Kovtun, T., Chiu, W.-L., Tena, G. and Sheen, J. 2000. Functional analysis of oxidative stress-activated MAPK cascade in plants. Proc Natl Acad Sci USA 97: 2940–2945.

    Google Scholar 

  • Kultz, D. 1998. Phylogenetic and functional classification of mitogen-and stress-activated protein kinases. J Mol Evol 46: 571–588.

    Google Scholar 

  • Lebrun-Garcia, A., Ouaked, F., Chiltz, A. and Pugin, A. 1998. Activation of MAPK homologues by elicitors in tobacco cells. Plant J 15: 773–781.

    Google Scholar 

  • Lee, F.S., Hagler, J., Chen, Z.J. and Maniatis, T. 1997a. Activation of the IкB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88: 213–222.

    Google Scholar 

  • Lee, S.M., Suh, S., Kim, S., Crain, R.C., Kwak, J.M., Nam, H.G. and Lee, Y.S. 1997b. Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J 12: 547–556.

    Google Scholar 

  • Leprince, A., Jouannic, S., Hamal, A., Kreis, M. and Henry, Y. 1999. Molecular characterisation of plant cDNAs BnMAP4Kalpha1 and BnMAP4Kalpha2 belonging to the GCK/SPS1 subfamily of MAP kinase kinase kinase kinase. Biochim Biophys Acta 1444: 1–13.

    Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.

    Google Scholar 

  • Li, J.X. and Assmann, S.M. 1996. An abscisic acid-activated and calcium-independent protein kinase from guard cells of faba bean. Plant Cell 8: 2359–2368.

    Google Scholar 

  • Ligterink, W. 2000. MAP kinases in plant signal transduction: how many, and what for? Results Probl Cell Differ 27: 11–27.

    Google Scholar 

  • Ligterink, W., Kroj, T., zur Nieden, U., Hirt, H. and Scheel, D. 1997. Receptor-mediated activation of aMAP kinase in pathogen defense of plants. Science 276: 2054–2057.

    Google Scholar 

  • Lin, L.L., Wartmann, M., Lin, A.Y., Knopf, J.L., Seth, A. and Davis, R.J. 1993. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269–278.

    Google Scholar 

  • Luan, S. 1998. Protein phosphatases and signaling cascades in higher plants. Trends Plant Sci 3: 271–275.

    Google Scholar 

  • Machida, Y., Nakashima, M., Morikiyo, K., Banno, H., Ishikawa, M., Soyano, T. and Nishihama, R. 1998. MAPKKK-related protein kinase NPK1: regulation of the M phase of plant cell cycle. J Plant Res 111: 243–246.

    Google Scholar 

  • Maeda, T., Takehara, M. and Saito, H. 1995. Activation of yeast PBS2 MAPKK by MAPKKKs or binding of an SH3-containing osmosensor. Science 269: 554–558.

    Google Scholar 

  • Malone, M. 1992. Kinetics of wound-induced hydraulic signals and variation potentials in wheat seedlings. Planta 187: 505–510.

    Google Scholar 

  • Marshall, C.J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185.

    Google Scholar 

  • Mathieu, Y., Lapous, D., Thomine, S., Laurioere, C. and Guern, J. 1996. Cytoplasmic acidification as an early hosphorylationdependent response of tobacco cells to elicitors. Planta 199: 416–424.

    Google Scholar 

  • Meindl, T., Boller, T. and Felix, G. 1998. The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10: 1561–1570.

    Google Scholar 

  • Meskiene, I., Bogre, L., Glaser, W., Balog, J., Brandstotter, M., Zwerger, K., Ammerer, G. and Hirt, H. 1998a. MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc Natl Acad Sci USA 95: 1938–1943.

    Google Scholar 

  • Meskiene, I., Ligterink, W., Bögre, L., Jonak, K., Kiegerl, K., Balog, L., Eklöf, S., Ammerer, G. and Hirt, H. 1998b. The SAM kinase pathway: an integrated circuit for stress signaling in plants. J. Plant Res 111: 339–344.

    Google Scholar 

  • Mizoguchi, T., Gotoh, Y., Nishida, E., Yamaguchi-Shinozaki, K., Hayashida, N., Iwasaki, T., Kamada, H. and Shinozaki, K. 1994. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J 5: 111–122.

    Google Scholar 

  • Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K. and Shinozaki, K. 1996. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93: 765–769.

    Google Scholar 

  • Mizoguchi, T., Ichimura, K., Irie, K., Morris, P., Giraudat, J., Matsumoto, K. and Shinozaki, K. 1998. Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett 437: 56–60.

    Google Scholar 

  • Monroy, A.F., Sangwan, V. and Dhindsa, R.S. 1998. Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J 13: 653–660.

    Google Scholar 

  • Monroy, A.F., Sarhan, F. and Dhindsa, R.S. 1993. Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression-evidence for a role of calcium. Plant Physiol 102: 1227–1235.

    Google Scholar 

  • Mori, I.C. and Muto, S. 1997. Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. Plant Physiol 113: 833–839.

    Google Scholar 

  • Morris, P.C., Guerrier, D., Leung, J. and Giraudat, J. 1997. Cloning and characterisation of MEK1, an Arabidopsis gene encoding a homologue of MAP kinase kinase. Plant Mol Biol 35: 1057–1064.

    Google Scholar 

  • Munnik, T., Ligterink, W., Meskiene, I., Calderini, O., Beyerly, J., Musgrave, A. and Hirt, H. 1999. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J 20: 381–388.

    Google Scholar 

  • Nakashima, M., Hirano, K., Nakashima, S., Banno, H., Nishihama, R. and Machida, Y. 1998. The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in a tobacco plant: correlation with cell proliferation. Plant Cell Physiol 39: 690–700.

    Google Scholar 

  • Nishihama, R., Banno, H., Kawahara, E., Irie, K. and Machida, Y. 1997. Possible involvement of differential splicing in regulation of the activity of Arabidopsis ANP1 that is related to mitogenactivated protein kinase kinase kinases (MAPKKKs). Plant J 12: 39–48.

    Google Scholar 

  • Nurnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K. and Scheel, D. 1994. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460.

    Google Scholar 

  • Payne, D.M., Rossomando, A.J., Martino, P., Erickson, A.K., Her, J.H., Shabanowitz, J., Hunt, D.F., Weber, M.J. and Sturgill, T.W. 1991. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J 10: 885–892.

    Google Scholar 

  • Posas, F. and Saito, H. 1997. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276: 1702–1705.

    Google Scholar 

  • Prestamo, G., Testillano, P.S., Vicente, O., Gonzalez-Melendi, P., Coronado, M.J., Wilson, C., Heberle-Bors, E. and Risueno, M.C. 1999. Ultrastructural distribution of a MAP kinase and transcripts in quiescent and cycling plant cells and pollen grains. J Cell Sci 112: 1065–1076.

    Google Scholar 

  • Printen, J.A. and Sprague, G.F., Jr. 1994. Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. Genetics 138: 609–619.

    Google Scholar 

  • Raz, V. and Fluhr, R. 1993. Ethylene signaling is transduced via protein phosphorylation events in plants. Plant Cell 5: 2359–2368.

    Google Scholar 

  • Robinson, M.J. and Cobb, M.H. 1997. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9: 180–186.

    Google Scholar 

  • Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H. and Jones, J.D. 1999. Rapid Avr9-and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11: 273–287.

    Google Scholar 

  • Rossomando, A.J., Dent, P., Sturgill, T.W. and Marshak, D.R. 1994. Mitogen-activated protein kinase kinase 1 (MKK1) is negatively regulated by threonine phosphorylation. Mol Cell Biol 14: 1594–1602.

    Google Scholar 

  • Ryan, C.A. and Pearce, G. 1998. Systemin: a polypeptide signal for plant defensive genes. Annu Rev Cell Dev Biol 14: 1–17.

    Google Scholar 

  • Sano, H., Seo, S., Koizumi, N., Niki, T., Iwamura, H. and Ohashi, Y. 1996. Regulation by cytokinins of endogenous levels of jasmonic and salicylic acids in mechanically wounded tobacco plants. Plant Cell Physiol 37: 762–769.

    Google Scholar 

  • Sano, H., Seo, S., Orudgev, E., Youssefian, S., Ishizuka, K. and Ohashi, Y. 1994. Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc Natl Acad Sci USA 91: 10556–10560.

    Google Scholar 

  • Schaeffer, H.J., Catling, A.D., Eblen, S.T., Collier, L.S., Krauss, A. and Weber, M.J. 1998. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281: 1668–1671.

    Google Scholar 

  • Schaller, G.E. and Bleecker, A.B. 1995. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270: 1809–1811.

    Google Scholar 

  • Schoenbeck, M.A., Samac, D.A., Fedorova, M., Gregerson, R.G., Gantt, J.S. and Vance, C.P. 1999. The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Mol Plant-Microbe Interact 12: 882–893.

    Google Scholar 

  • Seger, R., Ahn, N.G., Posada, J., Munar, E.S., Jensen, A.M., Cooper, J.A., Cobb, M.H. and Krebs, E.G. 1992. Purification and characterization of mitogen-activated protein kinase activator( s) from epidermal growth factor-stimulated A431 cells. J Biol Chem 267: 14373–14381.

    Google Scholar 

  • Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H. and Ohashi, Y. 1995. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270: 1988–1992.

    Google Scholar 

  • Seo, S., Sano, H. and Ohashi, Y. 1997. Jasmonic acid in wound signal transduction pathways. Physiol Plant 101: 740–745.

    Google Scholar 

  • Seo, S., Sano, H. and Ohashi, Y. 1999. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11: 289–298.

    Google Scholar 

  • Sessa, G., Raz, V., Savaldi, S. and Fluhr, R. 1996. PK12, a plant dual-specificity protein kinase of the LAMMER family, is regulated by the hormone ethylene. Plant Cell 8: 2223–2234.

    Google Scholar 

  • Shapiro, P.S., Vaisberg, E., Hunt, A.J., Tolwinski, N.S., Whalen, A.M., McIntosh, J.R. and Ahn, N.G. 1998. Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J Cell Biol 142: 1533–1545.

    Google Scholar 

  • Solano, R. and Ecker, J.R. 1998. Ethylene gas: perception, signaling and response. Curr Opin Plant Biol 1: 393–398.

    Google Scholar 

  • Stratmann, J.W. and Ryan, C.A. 1997. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc Natl Acad Sci USA 94: 11085–11089.

    Google Scholar 

  • Suzuki, K., Fukuda, Y. and Shinshi, H. 1995. Studies on elicitorsignal transduction leading to differential expression of defense genes in cultured tobacco cells. Plant Cell Physiol 36: 281–289.

    Google Scholar 

  • Suzuki, K. and Shinshi, H. 1995. Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with fungal elicitor. Plant Cell 7: 639–647.

    Google Scholar 

  • Suzuki, K., Yano, A. and Shinshi, H. 1999. Slow and prolonged activation of the p47 protein kinase during hypersensitive cell death in a culture of tobacco cells. Plant Physiol 119: 1465–1472.

    Google Scholar 

  • Takahashi, K., Isobe, M. and Muto, S. 1997. An increase in cytosolic calcium ion concentration precedes hypoosmotic shockinduced activation of protein kinases in tobacco suspension culture cells. FEBS Lett 401: 202–206.

    Google Scholar 

  • Takahashi, K., Isobe, M. and Muto, S. 1998. Mastoparan induces an increase in cytosolic calcium ion concentration and subsequent activation of protein kinases in tobacco suspension culture cells. Biochim Biophys Acta 1401: 339–346.

    Google Scholar 

  • Tena, G. and Renaudin, J.P. 1998. Cytosolic acidification but not auxin at physiological concentration is an activator of MAP kinases in tobacco cells. Plant J 16: 173–182.

    Google Scholar 

  • Tournier, C., Whitmarsh, A.J., Cavanagh, J., Barrett, T. and Davis, R.J. 1999. The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol Cell Biol 19: 1569–1581.

    Google Scholar 

  • Trojanek, J., Ek, P., Scoble, J., Muszynska, G. and Engstrom, L. 1996. Phosphorylation of plant proteins and the identification of protein-tyrosine kinase activity in maize seedlings. Eur J Biochem 235: 338–344.

    Google Scholar 

  • Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T. and Shinozaki, K. 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 1743–1754.

    Google Scholar 

  • Usami, S., Banno, H., Ito, Y., Nishimama, R. and Machida, Y. 1995. Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci USA 92: 8660–8664.

    Google Scholar 

  • Viard, M.P., Martin, F., Pugin, A., Ricci, P. and Blein, J.P. 1994. Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol 104: 1245–1249.

    Google Scholar 

  • Wang, M., Oppedijk, B.J., Lu, X., van Duijn, B. and Schilperoort, R.A. 1996. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol Biol 32: 1125–1134.

    Google Scholar 

  • Whitmarsh, A.J. and Davis, R.J. 1998. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 23: 481–485.

    Google Scholar 

  • Widmann, C., Gibson, S., Jarpe, M.B. and Johnson, G.L. 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.

    Google Scholar 

  • Wildon, D.C., Thain, J.F., Minchin, P.E.H., Gubb, I.R., Reilly, A.J., Skipper, Y.D., Doherty, H.M., O'Donnell, P.J. and Bowles, D.J. 1992. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360: 62–65.

    Google Scholar 

  • Wilson, C., Pfosser, M., Jonak, C., Hirt, H., Heberle-Bors, E. and Vicente, O. 1998. Evidence for the activation of a MAP kinase upon phosphate-induced cell cycle re-entry in tobacco cells. Physiol Plant 102: 523–538.

    Google Scholar 

  • Wilson, C., Voronin, V., Touraev, A., Vicente, O. and Heberle-Bors, E. 1997. A developmentally regulated MAP kinase activated by hydration in tobacco pollen. Plant Cell 9: 2093–2100.

    Google Scholar 

  • Wurgler-Murphy, S.M., Maeda, T., Witten, E.A. and Saito, H. 1997. Regulation of the Saccharomyces cerevisiae HOG1 mitogenactivated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 17: 1289–1297.

    Google Scholar 

  • Wurgler-Murphy, S.M. and Saito, H. 1997. Two-component signal transducers and MAPK cascades. Trends Biochem Sci 22: 172–176.

    Google Scholar 

  • Xu, Q., Fu, H.H., Gupta, R. and Luan, S. 1998. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell 10: 849–857.

    Google Scholar 

  • Xu, S. and Cobb, M.H. 1997. MEKK1 binds directly to the c-Jun N-terminal kinases/stress-activated protein kinases. J Biol Chem 272: 32056–32060.

    Google Scholar 

  • Yang, Y., Shah, J. and Klessig, D.F. 1997. Signal perception and transduction in plant defense responses. Genes Dev 11: 1621–1639.

    Google Scholar 

  • Yano, A., Suzuki, K., Uchimiya, H. and Shinshi, H. 1998. Induction of hypersensitive cell death by a fungal protein in cultures of tobacco cells. Mol Plant-Microbe Interact 11: 115–123.

    Google Scholar 

  • Zecevic, M., Catling, A.D., Eblen, S.T., Renzi, L., Hittle, J.C., Yen, T.J., Gorbsky, G.J. and Weber, M.J. 1998. Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 142: 1547–1558.

    Google Scholar 

  • Zhang, F., Strand, A., Robbins, D., Cobb, M.H. and Goldsmith, E.J. 1994. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367: 704–711.

    Google Scholar 

  • Zhang, J., Zhang, F., Ebert, D., Cobb, M.H. and Goldsmith, E.J. 1995. Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure 3: 299–307.

    Google Scholar 

  • Zhang, S., Du, H. and Klessig, D.F. 1998. Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell 10: 435–450.

    Google Scholar 

  • Zhang, S. and Klessig, D.F. 1997. Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9: 809–824.

    Google Scholar 

  • Zhang, S. and Klessig, D.F. 1998a. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci USA 95: 7433–7438.

    Google Scholar 

  • Zhang, S. and Klessig, D.F. 1998b. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci USA 95: 7225–7230.

    Google Scholar 

  • Zheng, C.F. and Guan, K.L. 1994. Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J 13: 1123–1131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meskiene, I., Hirt, H. MAP kinase pathways: molecular plug-and-play chips for the cell. Plant Mol Biol 42, 791–806 (2000). https://doi.org/10.1023/A:1006405929082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006405929082

Navigation