Skip to main content
Log in

On an Alternative Parameterization of the Solutions of the Partial Realization Problem

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The solutions of the partial realization problem have to satisfy a finite number of interpolation conditions at ∞. The minimal degree of an interpolating deterministic system is called the algebraic degree or McMillan degree of the partial covariance sequence and is easy to compute. The solutions of the partial stochastic realization problem have to satisfy the same interpolation conditions and have to fulfill a positive realness constraint. The minimal degree of a stochastic realization is called the positive degree. In the literature, solutions of the partial realization problem are parameterized by the Kimura–Georgiou parameterization. Solutions of the partial stochastic realization problem are then obtained by checking the positive realness constraint for the interpolating solutions of the corresponding partial realization problem. In this paper, an alternative parameterization is developed for the solutions of the partial realization problems. Both the solutions of the partial and partial stochastic realization problem are analyzed in this parameterization, while the main concerns are the minimality and the uniqueness of the solutions. Based on the structure of the parameterization, a lower bound for the positive degree is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bultheel, A. and Van Barel, M.: Linear Algebra, Rational Approximation and Orthogonal Polynomial, Stud. Comput. Math. 6, North-Holland, Amsterdam, 1997.

  2. Byrnes, C. I. and Lindquist, A.: An algebraic description of the rational solutions of the covariance extension problem, In: C. I. Byrnes, C. F. Martin and R. E. Saeks (eds), Linear Circuits, Systems and Signal Processing: Theory and Application, North-Holland, Amsterdam, 1988, pp. 9–17.

  3. Byrnes, C. I., Gusev, S. V. and Lindquist, A.: A convex optimization approach to the rational covariance extension problem, SIAM J. Control Optim. 37 (1998), 211–229.

    Google Scholar 

  4. Byrnes, C. I. and Lindquist, A.: On the partial stochastic realization problem, IEEE Trans. Automatic Control 42 (1997), 1049–1070.

    Google Scholar 

  5. Cadzow, J. A.: Spectral estimation: An overdetermined rational model equation approach, Proc. IEEE 70 (1982), 907–939.

    Google Scholar 

  6. Dahlén, A., Lindquist, A. and Marí, J.: Experimental evidence showing that stochastic subspace identification methods may fail, Systems Control Lett. 34 (1998), 303–312.

    Google Scholar 

  7. Delsarte, Ph., Genin, Y., Kamp, Y. and Van Dooren, P.: Speech modelling and the trigonometric moment problem, Philips J. Res. 37 (1982), 277–292.

    Google Scholar 

  8. Georgiou, T. T.: Realization of power spectra from partial covariance sequences, IEEE Trans. Acoustics, Speech Signal Processing 35 (1987), 438–449.

    Google Scholar 

  9. Genin, Y. V.: On polynomials nonnegative on the unit circle and related questions, Linear Algebra Appl. 256 (1996), 317–325.

    Google Scholar 

  10. Gragg, W. B. and Lindquist, A.: On the partial realization problem, Linear Algebra Appl. 50 (1983), 277–319.

    Google Scholar 

  11. Ho, B. L. and Kalman, R. E.: Efficient construction of linear state variable models from input/output functions, Regelungstechnik 14 (1966), 545–548.

    Google Scholar 

  12. Lang, S.:Algebra, Addison-Wesley, New York, 1970.

    Google Scholar 

  13. Lindquist, A. and Picci, G.: Canonical correlation analysis, approximate covariance extension, and identification of stationary time series, Automatica 32 (1996), 709–733.

    Google Scholar 

  14. Kalman, R. E.: On minimal partial realizations of a linear input/output map, In: R. E. Kalman and N. de Claris (eds), Aspects for Network and System Theory, Holt, Reinhart and Winston, New York, 1971, pp. 385–408.

    Google Scholar 

  15. Kimura, H.: Positive partial realization of covariance sequences, In: C. I. Byrnes and A. Lindquist (eds), Modeling, Identification and Robust Control, North-Holland, Amsterdam, 1986, pp. 499–513.

  16. Kronecker, L.: Zur Teorie der Elimination einer Variabeln aus zwei algebraischen Gleichnungen, Monatsber. König. Preuss. Akac. Wiss., Berlin, 1881.

    Google Scholar 

  17. Makhoul, J.: Linear prediction: A tutorial review, Proc. IEEE 63 (1975), 561–580.

    Google Scholar 

  18. Oono, Y.: Introduction to pseudo-positive-real functions, In: Proc. 1981 Int. Symp. Circuits and Systems, Chicago, 1981, pp. 469–472.

  19. Tether, A. J.: Construction of minimal linear state-variable models form finite input-output data, IEEE Trans. Automatic Control 15 (1970), 427–436.

    Google Scholar 

  20. Van Barel, M. and Bultheel, A.: An algebraic method to solve the minimal partial realization problem for matrix sequences, In: C. I. Byrnes, C. F. Martin and R. E. Saeks (eds), Linear Circuits, Systems and Signal Processing: Theory and Application, North-Holland, Amsterdam, 1988, pp. 93–100.

  21. Van Barel, M. and Bultheel, A.: A new approach to the rational interpolation problem, J. Comput. Appl. Math. 33 (1990), 281–289.

    Google Scholar 

  22. Van Barel, M. and Bultheel, A.: A new formal approach to the rational interpolation problem, Numer. Math. 62 (1992), 87–122.

    Google Scholar 

  23. Van Barel, M. and Bultheel, A.: A generalized minimal partial realization problem, Linear Algebra Appl. 254 (1997), 527–551.

    Google Scholar 

  24. Van Overschee, P. and De Moor, B.: Subspace algorithms for the stochastic identification problem, Automatica 29 (1993), 649–660.

    Google Scholar 

  25. Van Overschee, P. and De Moor, B.: Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer Acad. Publ., Dordrecht, 1996.

    Google Scholar 

  26. Wittle, P.: On the fitting of multivariate regressions and the approximate canonical factorization of a spectral density matrix,Biometrica 50 (1963), 129–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Gestel, T., Van Barel, M. & De Moor, B. On an Alternative Parameterization of the Solutions of the Partial Realization Problem. Acta Applicandae Mathematicae 61, 317–331 (2000). https://doi.org/10.1023/A:1006405104724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006405104724

Navigation