Skip to main content
Log in

Systemic silencing signal(s)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Grafting experiments have revealed that transgenic plants that undergo co-suppression of homologous transgenes and endogenous genes or PTGS of exogenous transgenes produce a sequence-specific systemic silencing signal that is able to propagate from cell to cell and at long distance. Similarly, infection of transgenic plants by viruses that carry (part of) a transgene sequence results in global silencing (VIGS) of the integrated transgenes although viral infection is localized. Systemic PTGS and VIGS strongly resemble recovery from virus infection in non-transgenic plants, leading to protection against secondary infection in newly emerging leaves and PTGS of transiently expressed homologous transgenes. The sequence-specific PTGS signal is probably a transgene product (for example, aberrant RNA) or a secondary product (for example, RNA molecules produced by an RNA-dependent RNA polymerase with transgene RNA as a matrix) that mimics the type of viral RNA that is targeted for degradation by cellular defence. Whether some particular cases of transgene TGS could also rely on the production of such a mobile molecule is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Kaff, N.S., Covey, S.N., Kreike, M.M., Page, A.M., Pinder, R. and Dale, P.J. 1998. Transcriptional and posttranscriptional plant gene silencing in response to a pathogen. Science 279: 2113–2115.

    PubMed  Google Scholar 

  • Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H. and Vance, V.B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95: 13079–13084.

    Google Scholar 

  • Baulcombe, D.C. 1996. RNA as a target and an initiator of posttranscriptional gene silencing in transgenic plants. Plant Mol. Biol. 32: 79–88.

    PubMed  Google Scholar 

  • Béclin, C., Berthomé, R., Palauqui, J.C., Tepfer, M. and Vaucheret, H. 1998. Infection of tobacco or Arabidopsis plants by CMV counteracts systemic post-transcriptional silencing of nonviral (trans)genes. Virology 252: 313–317.

    Google Scholar 

  • Bender, J. and Fink, G.R. 1995. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83: 725–734.

    PubMed  Google Scholar 

  • Boerjan, W., Bauw, G., Van Montagu, M. and Inzé, D. 1994. Distinct phenotypes generated by over expression and suppression of S-adenosyl-L-methionine synthetase reveal developmental patterns of gene silencing in tobacco. Plant Cell 6: 1401–1414.

    Article  PubMed  Google Scholar 

  • Brigneti, G., Voinnet, O., Li, W.-X., Ji, L.-H., Ding, S.-W. and Baulcombe, D.C. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17: 6739–6746.

    PubMed  Google Scholar 

  • Brusslan, J.A., Karlin-Neumann, G.A., Huang, L. and Tobin, E.M. 1993. An Arabidopsis mutant with a reduced level of cab140 RNA is a result of cosuppression. Plant Cell 5: 667–677.

    Article  PubMed  Google Scholar 

  • Cogoni, C. and Macino, G. 1999a. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286: 2342–2344.

    Google Scholar 

  • Cogoni, C. and Macino, G. 1999b. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399: 166–169.

    PubMed  Google Scholar 

  • Covey, S.N., Al-Kaff, N.S., Langara, A. and Turner, D.S. 1997. Plants combat infection by gene silencing. Nature 387: 781–782.

    Google Scholar 

  • Davies, G.J., Sheikh, M.A., Ratcliffe, O.J., Coupland, G. and Furner, I.J. 1997. Genetics of homology-dependent gene silencing in Arabidopsis: a role for methylation. Plant J. 12: 791–804.

    PubMed  Google Scholar 

  • Ding, S.-W., Li, W.-X. and Symons, R.H. 1995. A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J. 14: 5762–5772.

    PubMed  Google Scholar 

  • Elmayan, T. and Vaucheret, H. 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J. 9: 787–797.

    Google Scholar 

  • Elmayan, T., Balzergue, S., Béon, F., Bourdon, V., Daubremet, J., Guénet, Y., Mourrain, P., Palauqui, J.-C., Vernhettes, S., Vialle, T., Wostrikoff, K. and Vaucheret, H. 1998. Arabidopsis mutants impaired in cosuppression. Plant Cell 10: 1447–1457.

    Google Scholar 

  • English, J.J., Mueller, E. and Baulcombe, D.C. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8: 179–188.

    Article  PubMed  Google Scholar 

  • Hamilton, A. and Baulcombe, D. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–952.

    PubMed  Google Scholar 

  • Jones, L., Hamilton, A.J., Voinnet, O., Thomas, C.L., Maule, A.J. and Baulcombe D.C. 1999. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11: 2291–2301.

    PubMed  Google Scholar 

  • Jorgensen, R., Atkinson, R., Forster, R. and Lucas, W. 1998. An RNA-based information superhighway in plants. Science 279: 1486–1487.

    PubMed  Google Scholar 

  • Kasschau, K.D. and Carrington, J.C. 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95: 461–470.

    PubMed  Google Scholar 

  • Kasschau, K., Cronin, S. and Carrington, J. 1997. Genome ampli-fication and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper componentproteinase. Virology 228: 251–262.

    PubMed  Google Scholar 

  • Kjemtrup, S., Sampson, K.S., Peele, C.G., Nguyen, L.V., Conkling, M.A., Thompson, W.F. and Robertson, D. 1998. Gene silencing from plant DNA carried by a geminivirus. Plant J. 14: 91–100.

    PubMed  Google Scholar 

  • Kooter, J., Matzke, M. and Meyer, P. 1999. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 4: 340–347.

    PubMed  Google Scholar 

  • Kumagai, M.H., Donson, J., Della-Cioppa, G., Harvey, D., Hanley, K. and Grille, L.K. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 92: 1679–1683.

    PubMed  Google Scholar 

  • Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M. and Dougherty, W.G. 1993. Induction of highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5: 1749–1759.

    Article  PubMed  Google Scholar 

  • Luff, B., Pawlowski, L. and Bender, J. 1999. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3: 505–511.

    Article  PubMed  Google Scholar 

  • Matzke, A.J.M., Neuhuber, F., Park, Y.D., Ambros, P.F. and Matzke, M.A. 1994. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244: 219–229.

    PubMed  Google Scholar 

  • Matzke, M.A. and Matzke, A.J.M. 1995. How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107: 679–685.

    PubMed  Google Scholar 

  • Matzke, M.A., Primig, M., Trnovsky, J. and Matzke, A.J.M. 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8: 643–649.

    Google Scholar 

  • Mette, M.F., van der Winden, J., Matzke, M.A. and Matzke, A.J. 1999. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 18: 241–248.

    PubMed  Google Scholar 

  • Metzlaff, M., O'Dell, M., Cluster, P.D. and Flavell, R.B. 1997. RNA-mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88: 845–854.

    Google Scholar 

  • Meyer, P., Heidmann, I. and Niedenhof, I. 1993. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 4: 89–100.

    PubMed  Google Scholar 

  • Nagl, W. 1976. DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261: 614–615.

    PubMed  Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous gene in trans. Plant Cell 2: 279–289.

    Article  PubMed  Google Scholar 

  • Palauqui, J.-C. and Balzergue, S. 1999. Activation of systemic acquired silencing by localised introduction of DNA. Curr. Biol. 9: 59–66.

    PubMed  Google Scholar 

  • Palauqui, J.-C. and Vaucheret, H. 1998. Transgenes are dispensable for the RNA degradation step of cosuppression. Proc. Natl. Acad. Sci. USA 95: 9675–9680.

    PubMed  Google Scholar 

  • Palauqui, J.-C., Elmayan, T., Dorlhac de Borne, F., Crété, P., Charles, C. and Vaucheret, H. 1996. Frequencies, timing, and spatial patterns of cosuppression of nitrate reductase and nitrite reductase in transgenic tobacco plants. Plant Physiol. 112: 1447–1456.

    PubMed  Google Scholar 

  • Palauqui, J.-C., Elmayan, T., Pollien, J.-M. and Vaucheret, H. 1997. Systemic acquired silencing: transgene specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16: 4738–4745.

    PubMed  Google Scholar 

  • Ratcliff, F., Harrison, B.D. and Baulcombe, D.C. 1997. A similarity between viral defense and gene silencing in plants. Science 276: 1558–1560.

    Google Scholar 

  • Ratcliff, F.G., MacFarlane, S.A. and Baulcombe, D.C. 1999. Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11: 1207–1215.

    PubMed  Google Scholar 

  • Roberts, A.G., Cruz, S.S., Roberts, I.M., Prior, D.A.M., Turgeon, R. and Oparka, K.J. 1997. Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9: 1381–1396.

    PubMed  Google Scholar 

  • Ruiz, M.T., Voinnet, O. and Baulcombe, D.C. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937–946.

    PubMed  Google Scholar 

  • Stam, M., Mol, J.N.M. and Kooter, J.M. 1997. The silence of genes in transgenic plants. Ann. Bot. 79: 3–12.

    Google Scholar 

  • Thierry, D. and Vaucheret, H. 1996. Sequence homology requirements for transcriptional silencing of 35S transgenes and posttranscriptional silencing of nitrite reductase (trans)genes by the tobacco 271 locus. Plant Mol. Biol. 32: 1075–1083.

    PubMed  Google Scholar 

  • van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. 1990. Flavonoid genes in petunia: addition of a limited number of genes copies may lead to a suppression of gene expression. Plant Cell 2: 291–299.

    Article  PubMed  Google Scholar 

  • Vaucheret, H. 1993. Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant: 90 pb of homology in the promoter sequences are sufficient for trans-inactivation. C.R. Acad. Sci. Paris 316: 1471–1483.

    Google Scholar 

  • Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Mourrain, P., Palauqui, J.C. and Vernhettes, S. 1998. Transgene-induced gene silencing in plants. Plant J. 16: 651–659.

    PubMed  Google Scholar 

  • Vaucheret, H., Nussaume, L., Palauqui, J.-C., Quilleré, I. and Elmayan, T. 1997. A transcriptionally active state is required for post-transcriptional silencing (cosuppression) of nitrate reductase host genes and transgenes. Plant Cell 9: 1495–1504.

    PubMed  Google Scholar 

  • Voinnet, O. and Baulcombe, D.C. 1997. Systemic signalling in gene silencing. Nature 389: 553.

    PubMed  Google Scholar 

  • Voinnet, O., Vain, P., Angell, S. and Baulcombe, D.C. 1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95: 177–187.

    PubMed  Google Scholar 

  • Wassenegger, M. and Pélissier, T. 1998. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol. 37: 349–362.

    PubMed  Google Scholar 

  • Waterhouse, P.M., Graham, M.W. and Wang, M.-B. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95: 13959–13964.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagard, M., Vaucheret, H. Systemic silencing signal(s). Plant Mol Biol 43, 285–293 (2000). https://doi.org/10.1023/A:1006404016494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006404016494

Navigation