Skip to main content
Log in

Cloning, sequencing and analysis of the pucC genes from Rubrivivax gelatinosus strain 151 and Rhodopseudomonas acidophila strain 10050

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The pucC genes of Rubrivivax gelatinosus strain 151 and Rhodopseudomonas acidophila strain 10050 have been identified, cloned and sequenced. In Rubrivivax gelatinosus the arrangement of the pucC gene with regard to the pucBA genes was shown to differ from that found in other species of photosynthetic bacteria. The Rhodopseudomonas acidophila pucC was found downstream of four new pucBA gene pairs, bringing the sequenced pucBA pairs to a total of eight in this strain. The predicted PucC protein sequences were compared to those of PucC from other species and showed high similarity. Similarity was also seen to more distantly related proteins LhaA and orf428 of Rhodobacter capsulatus, orf G115 of Rhodospirillum rubrum and `orf428' from Synechocystis sp. PCC6803. An analysis of the predicted secondary structure of these proteins is given, and their structural similarity to proteins in the Major Facilitator Superfamily is discussed with regard to their possible function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84(17): 6162–6

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25(17): 3389–402

    Article  PubMed  CAS  Google Scholar 

  • Bauer CE, Buggy JJ, Yang Z and Marrs BL (1991) The superoperonal organization of genes for pigment biosynthesis and reaction center proteins is a conserved feature in Rhodobacter capsulatus: Analysis of overlapping bchB and puhA transcripts. Mol Gen Genet 228: 438–444

    Article  Google Scholar 

  • Bérard J, Bélanger G and Gingras G (1989). Mapping of puh messenger RNAs from Rhodospirillum rubrum; evidence for tandem promoters. J Biol Chem 264: 10897–10903

    PubMed  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237(5): 622–640

    Article  PubMed  CAS  Google Scholar 

  • Brendel V and Trifanov EN (1984) A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res 12(10): 4411–4427

    PubMed  CAS  Google Scholar 

  • Conroy MJ, Westerhuis WH, Parkes-Loach PS, Loach PA, Hunter CN and Williamson MP (2000) The solution structure of Rhodobacter sphaeroides LH1beta reveals two helical domains separated by a more flexible region: Structural consequences for the LH1 complex. J Mol Biol 298(1): 83–94

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. Biosci Rep 9(4): 383–419

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature 318: 618–624

    Article  Google Scholar 

  • Freer A, Prince S, Sauer K, Papiz M, Hawthornthwaite-Lawless A, McDermott G, Cogdell R and Isaacs NW (1996) Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4(4): 449–62

    Article  PubMed  CAS  Google Scholar 

  • Gardiner AT (1992) Peripheral antenna complexes from Rhodopseudomonas acidophila: Structure, function and fenetic manipulation. PhD Thesis, University of Glasgow

  • Gardiner AT, Mackenzie RC, Barrett S J, Kaiser K and Cogdell RJ (1996) The purple photosynthetic bacterium Rhodopseudomonas acidophila contains multiple Puc peripheral antenna complex (LH 2) genes: Cloning and initial characterisation of four β/α pairs. Photosynth Res 49: 223–235

    Article  CAS  Google Scholar 

  • Gibson LC, McGlynn P, Chaudhri M and Hunter CN (1992) A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. II. Analysis of a region of the genome encoding hemF and the Puc operon. Mol Microbiol 6(21): 3171–86

    PubMed  CAS  Google Scholar 

  • Hagemann GE, Katsiou E, Forkl H, Steindorf AC and Tadros MH (1997) Gene cloning and regulation of gene expression of the Puc operon from Rhodovulum sulfidophilum. Biochim Biophys Acta 1351(3): 341–358

    PubMed  CAS  Google Scholar 

  • Hames BD and Higgins SJ, (eds) (1987) Nucleic Acid Hybridisation: A Practical Approach. IRL Press

  • Henderson PJ (1990) Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr 22(4): 525–69

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K and Stoffel W (1993) TMBASE — a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374: 166

    Google Scholar 

  • Hu X and Schulten K (1998) Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. Biophys J 75(2): 683–94

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3(3): 109–36

    Article  PubMed  CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14(4): 631–638

    PubMed  CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4(5): 581–97

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc HN and Beatty JT (1993) Rhodobacter capsulatus Puc operon: Promoter location, transcript sizes and effects of deletions on photosynthetic growth. J Gen Microbiol 139: 101–109

    PubMed  CAS  Google Scholar 

  • LeBlanc HN and Beatty JT (1996) Topological analysis of the Rhodobacter capsulatus PucC protein and effects of C-terminal deletions on light-harvesting complex II. J Bacteriol 178(16): 4801–6

    PubMed  CAS  Google Scholar 

  • Lee JK, Kiley PJ and Kaplan S (1989) Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex of Rhodobacter sphaeroides. J Bacteriol 171: 3391–3405

    PubMed  CAS  Google Scholar 

  • Maiden MC, Davis EO, Baldwin SA, Moore DC and Henderson PJ (1987) Mammalian and bacterial sugar transport proteins are homologous. Nature 325(6105): 641–3

    Article  PubMed  CAS  Google Scholar 

  • Marger MD and Saier MH, Jr. (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport (see comments). Trends Biochem Sci 18(1): 13–20

    Article  PubMed  CAS  Google Scholar 

  • Mason PJ and Williams JG (1987) Hybridisation in the analysis of recombinant DNA. In: Hames BD and Higgins SJ (eds) Nucleic Acid Hybridisation: A Practical Approach, pp 113–137. IRL Press

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374 (6 April): 517–521

    Google Scholar 

  • Pao SS, Paulsen IT and Saier MH, Jr. (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62(1): 1–34

    PubMed  CAS  Google Scholar 

  • Papiz MZ, Prince SM, Hawthornthwaite-Lawless AM, McDermott G, Freer AA, Isaacs NW and Cogdell RJ (1996) A model for the photosynthetic apparatus of purple bacteria. Trends Plant Sci 1: 98–206

    Article  Google Scholar 

  • Pearson WR and Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85(8): 2444–8

    Article  PubMed  CAS  Google Scholar 

  • Rost B, Casadio R, Fariselli P and Sander C (1995) Transmembrane helices predicted at 95% accuracy. Protein Sci 4: 521–533

    Article  PubMed  CAS  Google Scholar 

  • Saier MH, Jr., Beatty JT, Goffeau A, Harley KT, Heijne WHM, Huang S-C, Jack DL, Jähn P S, Lew K, Liu J, Pao SS, Paulsen IT, Tseng T-T and Virk PS (1999) The Major facilitator superfamily. J Mol Microbiol Biotechnol 1(2): 257–279

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T, (eds) (1989) Molecular Cloning: A Laboratory Manual, second edition. Cold Spring Harbour Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Simmons AE (1995) Cloning, Sequencing and Expression of the Puc genes of two strains of Rubrivivax gelatinosus. PhD thesis, University of Glasgow

  • Simmons AE, Mackenzie RC and Cogdell R J (1999) Cloning and sequencing of the PucBA genes from two strains of Rubrivivax gelatinosus. Photosynth Res 62: 99–106

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22): 4673–80

    PubMed  CAS  Google Scholar 

  • Tichy HV, Albien K-U, Gad'on N and Drews G (1991) Analysis of the Rhodobacter capsulatus Puc operon: The PucC gene plays a central role in the regulation of LHII (B800-850 complex) expression. EMBO J 10(10): 2949–2955

    PubMed  CAS  Google Scholar 

  • Tichy HV, Oberle B, Stiehle E, Schiltz E and Drews G (1989) Genes downstream from PucA are essential for formation of the B800-850 complex of Rhodobacter capsulatus. J Bacteriol 171: 4914–4922

    PubMed  CAS  Google Scholar 

  • Von Heijne G (1992) Membrane protein structure prediction — hydrophobicity analysis and the positive inside rule. J Mol Biol 225: 487

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Iwasaki-Ohba Y, Ono N, Kaneko-Ohdera M and Sawai T (1991) Stoichiometry of metal-tetracycline/H+ antiport mediated by transposon Tn10-encoded tetracycline resistance protein in Escherichia coli. FEBS Lett 282(2): 415–8

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Nakatani M and Sawai T (1992a) Aspartic acid-66 is the only essential negatively charged residue in the putative hydrophilic loop region of the metal-tetracycline/H+ antiporter encoded by transposon Tn10 of Escherichia coli. Biochemistry 31(35): 8344–8

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Ono N, Akasaka T, Noumi T and Sawai T (1990a) Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon, Tn10, The role of the conserved dipeptide, Ser65-Asp66, in tetracycline transport. J Biol Chem 265(26): 15525–30

    PubMed  CAS  Google Scholar 

  • Yamaguchi A, Someya Y and Sawai T (1992b) Metaltetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. The role of a conserved sequence motif, GXXXXRXGRR, in a putative cytoplasmic loop between helices 2 and 3. J Biol Chem 267(27): 19155–62

    PubMed  CAS  Google Scholar 

  • Yamaguchi A, Udagawa T and Sawai T (1990b) Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J Biol Chem 265(9): 4809–13

    PubMed  CAS  Google Scholar 

  • Young CS and Beatty JT (1998) Topological model of the Rhodobacter capsulatus light-harvesting complex I assembly protein LhaA (previously known as ORF1696). J Bacteriol 180(17): 4742–5

    PubMed  CAS  Google Scholar 

  • Young CS, Reyes RC and Beatty JT (1998) Genetic complementation and kinetic analyses of Rhodobacter capsulatus ORF1696 mutants indicate that the ORF1696 protein enhances assembly of the light-harvesting I complex. J Bacteriol 180(7): 1759–65

    PubMed  CAS  Google Scholar 

  • Young CY and Beatty JT (1999) Structural and functional analysis of the orf1696/PucC family of light-harvesting complex assembly proteins. In: AL PE (ed) The Phototrophic Prokaryotes, pp 113–126. Kluwer Academic Publishers/Plenum Publishers, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J.R. Cogdell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, A.E., Barrett, S.J., Hunter, C.N. et al. Cloning, sequencing and analysis of the pucC genes from Rubrivivax gelatinosus strain 151 and Rhodopseudomonas acidophila strain 10050. Photosynthesis Research 65, 69–82 (2000). https://doi.org/10.1023/A:1006403901559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006403901559

Navigation