Skip to main content
Log in

Biplane X-ray angiograms, intravascular ultrasound, and 3D visualization of coronary vessels

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

The technology for determination of the 3D vascular tree and quantitative characterization of the vessel lumen and vessel wall has become available. With this technology, cardiologists will no longer rely primarily on visual inspection of coronary angiograms but use sophisticated modeling techniques combining images from various modalities for the evaluation of coronary artery disease and the effects of treatment. Techniques have been developed which allow the calculation of the imaging geometry and the 3D position of the vessel centerlines of the vascular tree from biplane views without a calibration object, i.e., from the images themselves, removing the awkwardness of moving the patient to obtain 3D information. With the geometry and positional information, techniques for reconstructing the vessel lumen can now be applied that provide more accurate estimates of the area and shape of the vessel lumen. In conjunction with these developments, techniques have been developed for combining information from intravascular ultrasound images with the information obtained from angiography. The combination of these technologies will yield a more comprehensive characterization and understanding of coronary artery disease and should lead to improved and perhaps less invasive patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vlodaver Z, Frech R, Van Tassel RA, Edwards JE. Correlation of the antemortem coronary angiogram and the postmortem specimen. Circulation 1973; 47: 162–169.

    Google Scholar 

  2. Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa M, Lesperance J. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation 1974; 49: 703–708.

    Google Scholar 

  3. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. NE Jour Med 1987; 316: 1371–1375.

    Google Scholar 

  4. Brown BG, Bolson EL, Dodge HT. Dynamic mechanisms in human coronary stenosis. Circulation 1986; 74: 106–111.

    Google Scholar 

  5. Blankenhorn DH, Hodis HN. Arterial imaging and atherosclerosis reversal. Arteriosclerosis and Thrombosis 1994; 14: 177–192.

    Google Scholar 

  6. Levin DC, Gardiner GA. Complex and simple coronary artery stenoses: a new way to interpret coronary angiograms based on morphologic features of lesions. Radiol 1987; 164: 675–680.

    Google Scholar 

  7. Ambrose JA. Coronary arteriographic analysis and angiographic morphology. JACC 1989; 13: 1492–1494.

    Google Scholar 

  8. Kirkeeide RL, Fung P, Smalling RW, Gould KL. Automated evaluation of vessel diameter from arteriograms. Proc Computers in Cardiology, Seattle, Washington, 1982; 215–218.

  9. Reiber JHC, Kooijman CJ, Slager CJ, Gerbrands JJ, Schuurbiers JCH, den Boer A, Wijns W, Serruys PW, Hugenholtz PG. Coronary artery dimensions from cineangiograms — methodology and validation of a computer-assisted analysis procedure. IEEE Transactions on Medical Imaging 1984; MI-3: 131–141.

    Google Scholar 

  10. Brown BG, Simpson P, Dodge JT, Bolson EL, Dodge HT. Quantitative and qualitative coronary arteriography. In: Reiber JHC, Serruys PW, editors. Quantitative Coronary Arteriography. Dordrecht: Kluwer, 1991; 3–21.

    Google Scholar 

  11. Beier J, Oswald H, Sauer HU, Fleck E. Accuracy of measurement in quantitative coronary angiography (QCA). In: Lemke HU, Rhodes ML, Jaffe CC, Felix R, editors. Computer Assisted Radiology '91. Berlin/New York: Springer, 1991; 721–726.

    Google Scholar 

  12. van der Zwet PMJ, Reiber JHC. A new approach for the quantification of complex lesion morphology: the gradient field transform; basic principles and validation results. JACC 1994; 24: 216–224.

    Google Scholar 

  13. Sonka M, Zhang X, Siebes M, Bissing MS, DeJong SC, Collins SM, McKay R. Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Transactions on Medical Imaging 1995; 14: 719–732.

    Google Scholar 

  14. Chakraborty DP. Image intensifier distortion correction. Med Phys 1987; 14: 249–252.

    Google Scholar 

  15. Fujita H, Doi K, MacMahon H, Kume Y, Giger ML, Hoffmann KR, Katafuchi T, Ohara K, Chan H-P. Basic imaging properties of a large image intensifier-TV digital chest radiographic system. Investigative Radiology 1987; 22: 328–335.

    Google Scholar 

  16. Haaker P, Koppe E, Linde R. Real-time distortion correction of digital X-ray II/TV-systems: an application example for digital flashing tomosynthesis (DFTS). International Journal of Cardiac Imaging 1990/91; 6: 39–45.

    Google Scholar 

  17. Boone JM, Seibert JA, Barrett WA, Blood EA. Analysis and correction of imperfections in the image intensifier-TV-digitizer imaging chain. Med Phys 1991; 18: 236–242.

    Google Scholar 

  18. Fahrig R, Moreau M, Holdsworth DW. Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: correction of image intensifier distortion. Med Phys 1997; 24: 1097–106.

    Google Scholar 

  19. Prause GPM, DeJong SC, McKay CR, Sonka M. Semi-automated segmentation and 3-D reconstruction of coronary trees: biplane angiography and intravascular ultrasound data fusion. Proc SPIE 1996; 2709: 82–92.

    Google Scholar 

  20. Wahle A, Krauß U, Oswald H, Fleck E. Inter-and Extrapolation of Correction Coefficients in Dynamic Image Rectification. Proc Computers in Cardiology, Lund, Sweden, 1997; 521–524.

  21. Wollschläger H, Lee P, Zeiher A, Solzbach U, Bonzel T, Just H. Mathematical tools for spatial computations with biplane isocentric X-ray equipment. Biomedizinische Technik 1986; 31: 101–106.

    Google Scholar 

  22. Parker D, Pope D, Van Bree R, Marshall H. Three-dimensional reconstruction of moving arterial beds from digital subtraction angiography. Comp and Biomed Res 1987; 20: 166–185.

    Google Scholar 

  23. Büchi M, Hess OM, Kirkeeide RL, Suter T, Muser M, Osenberg HP, Niederer, Anliker M, Gould KL, Krayenbühl HP. Validation of a new automatic system for biplane quantitative coronary arteriography. International Journal of Cardiac Imaging 1990; 5: 93–103.

    Google Scholar 

  24. Chen SJ, Hoffmann KR, Carroll JD. Computer assisted coronary intervention: 3D reconstruction and determination of optimal views. Proc Computers in Cardiology, Indianapolis, Indiana, 1996; 117–120.

  25. Hoffmann KR, Sen A, Metz CE, Chua KG, Williams BB, Esthappan J, Fiebich M, Mazzucco M, Doi K. Determination of 3D vessel trees from biplane coronary images. In: Lemke HU, Vannier MW, Inamura K, editors. Proc Computer Assisted Radiology '97, New York: Elsevier. 1997; 162–165.

    Google Scholar 

  26. Hall PM, Ngan M, Andreae PM. Reconstruction of vascular networks using three-dimensional models. IEEE Transactions on Medical Imaging 1997; 16: 919–929.

    Google Scholar 

  27. Tönnies KD, Remonda L, Koster D. Combining extraction and 3-D reconstruction of vessel center lines in biplane subtraction angiography. Proc SPIE 1998; 3338: 492–503.

    Google Scholar 

  28. Guggenheim N, Doriot PA, Dorsaz PA, Descouts P, Rutishauser W. Spatial reconstruction of coronary arteries from angiographic images. Physics in Medicine and Biology 1991; 36: 99–110.

    Google Scholar 

  29. Seiler C, Kirkeeide RL, Gould KL. Basic structure-function relations of the epicardial coronary vascular tree; basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation 1992; 85: 1987–2003.

    Google Scholar 

  30. Wahle A, Wellnhofer E, Mugaragu I, Sauer HU, Oswald H, Fleck E. Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms. IEEE Transactions on Medical Imaging 1995; 14: 230–241.

    Google Scholar 

  31. Wahle A. Präzise dreidimensionale Rekonstruktion von Gefäßsystemen aus biplanen angiographischen Projektionen und deren klinische Anwendung. No. 152 in Fortschritt-Berichte, Reihe Biotechnik (17), Düsseldorf: VDI Verlag, 1997 (in German).

    Google Scholar 

  32. Tobis JM. Intravascular ultrasound: a fantastic voyage. Circulation 1991; 84: 2190–2192.

    Google Scholar 

  33. Hoffmann KR, Esthappan J. Determination of 3D positions of known sparse objects from a single projection. Med Phys 1997; 24: 555–564.

    Google Scholar 

  34. Metz CE, Fencil LE. Determination of three-dimensional structure in biplane radiography without prior knowledge of the relationship between the two views. Med Phys 1989; 16: 45–51.

    Google Scholar 

  35. Hoffmann KR, Metz CE, Chen Y. Determination of 3D imaging geometry and object configurations from two biplane views: an enhancement of the Metz-Fencil technique. Med Phys 1995; 22: 1219–1227.

    Google Scholar 

  36. Potel MJ, Rubin JM, MacKay SA, Aisen AM, Al-Sadir J, Sayre RE. Methods for evaluating cardiac wall motion in three dimensions using bifurcation points of the coronary arterial tree. Invest Radiol 1983; 8: 47–57.

    Google Scholar 

  37. Hoffmann KR, Esthappan J, Li S, Pelizzari CA. A simple technique for calibrating imaging geometries. Proc SPIE 1996; 2708: 371–375.

    Google Scholar 

  38. Chen SYJ, Metz CE. Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees. Med Phys 1997; 24: 633–654.

    Google Scholar 

  39. Henri CJ, Peters TM. Three dimensional reconstruction of vascular trees. Theory and methodology. Med Phys 1996; 23: 197–204.

    Google Scholar 

  40. Close R, Morioka C, Whiting JS. Automatic correction of biplane projection imaging geometry. Med Phys 1996; 23: 133–139.

    Google Scholar 

  41. Wahle A, Oswald H, Schulze GA, Beier J, Fleck E. 3-D reconstruction, modelling and viewing of coronary vessels. In: Lemke HU, Rhodes ML, Jaffe CC, Felix, editors. Computer Assisted Radiology '91. Berlin/New York: Springer, 1991; 669–676.

    Google Scholar 

  42. Liu I, Sun Y. Fully automated reconstruction of 3D vascular tree structures from two orthogonal views using computational algorithms and production rules. Opt Eng 1992; 31: 2197–2207.

    Google Scholar 

  43. Kitamura K, Tobis JM, Sklansky J. Estimating the 3D skeletons and transverse areas of coronary arteries from biplane angiograms. IEEE Trans Med Imaging 1988; 7: 173–187.

    Google Scholar 

  44. Bresler Y, Macovsky A. Estimation of the 3D shape of blood vessels from X-Ray Images. Proc IEEE Comput Soc Int Symp Med Images Icons, Arlington, Texas, 1984; 251–258.

  45. Pellot C, Herment A, Sigelle M, Horain P, Peronneau P. Segmentation, modeling, and reconstruction of arterial bifurcations in digital angiography. Med & Biol Eng & Comp 1992; 30: 576–583.

    Google Scholar 

  46. Pellot C, Herment A, Sigelle M, Horain P, Maitre H, Peronneau P. A 3D reconstruction of vascular structures from two x-ray angiograms using an adapted simulated annealing algortithm. IEEE Transactions on Medical Imaging 1994; 13: 48–60.

    Google Scholar 

  47. Onnasch DGW, Schmitz W, Heintzen PH. Problems of the binary reconstruction of the left and right ventricle from biplane angiograms. In: Heintzen PH, Brennecke R, editors. Digital Imaging in Cardiovascular Radiology. New York: Georg Thieme Verlag, 1983; 141–151.

    Google Scholar 

  48. Slump CH, Gerbrands JJ. A network flow approach to reconstruction of the left ventricle from two projections. Compt Graph Image Processing 1982; 18: 18–36.

    Google Scholar 

  49. Reiber JHC, Gerbrands JJ, Troost GJ, Kooijman CJ, Slump CH. 3-D reconstruction of coronary arterial segments from two projections. In: Heintzen PH, Brennecke R, editors. Digital Imaging in Cardiovascular Radiology. New York: Georg Thieme Verlag, 1983; 151–163.

    Google Scholar 

  50. Tran LV, Bahn RC, Sklansky J. Reconstructing the cross-sections of coronary arteries from biplane angiograms. IEEE Trans Med Imag 1992; 11: 517–529.

    Google Scholar 

  51. Teague MR. Image analysis via the general theory of moments. J Opt Soc Am 1980; 70: 920–930.

    Google Scholar 

  52. Press WH. Numerical recipes in C. New York: Cambridge University Press, 1988.

    Google Scholar 

  53. Sigelle M, Ronfard R. Potts models and image labelling by random Markov fields. Traitement du signal 1992; 9: 449–458.

    Google Scholar 

  54. Haneishi H, Masuda T, Ohyama N, Honda T, Tsujiuchi J. Analysis of the cost function used in simulated annealing for CT image reconstruction. Applied Optics 1990; 29: 259–264.

    Google Scholar 

  55. Bom N, Li W, van der Steen AFW, de Korte CL, Gussenhoven EJ, von Birgelen, Lancee CT, Roelandt JRTC. Intravascular ultrasound: technical update 1995. In: de Feyter J, Mario CD, Serruys PW, editors. Quantitative Coronary Imaging. Rotterdam: Barjesteh, Meeuwes & Co. 1995; 89–106.

    Google Scholar 

  56. GUIDE Trial Investigators: IVUS-determined predictors of restenosis in PTCA and DCA: Final report from the GUIDE trial, phase II. Am Coll Cardiol 1996; 27: 156A.

    Google Scholar 

  57. Fitzgerald PJ, Hayase M, Mintz GS, Kuntz RE, Moses JW, Diver DJ, Deutsch E, Simonton SE, Baim DS, Leon MB, Yock PJ. Cruise. JACC 1996; 31(suppl A): 396A(abstract).

    Google Scholar 

  58. De Scheerder I, Man FD, Herregods MC, Wilczek K, Barrios L, Raymenants E, Desmet W, Geest HD, Piessens J. Intravascular ultrasound versus angiography for measurement of luminal diameters in normal and diseased coronary arteries. Am Heart J 1994; 127: 243–251.

    Google Scholar 

  59. Herrington DM, Johnson T, Santago P, Snyder WE. Semiautomated boundary detection for intravascular ultrasound. Proc Computers in Cardiology, Durham, North Carolina, 1992; 103–106.

  60. Li W, von Birgelen C, Mario CD, Boersma E, Gussenhoven EJ, van der Putten N, Bom N. Semi-automatic contour detection for volumetric quantification of intracoronary ultrasound. Proc Computers in Cardiology, 1994; 277–280.

  61. von Birgelen C, Mario CD, Li W, Slager CJ, de Feyter PJ, Roelandt JRTC, Serruys PW. Volumetric quantification by intracoronary ultrasound. In: de Feyter PJ, Mario CD, Serruys PW, editors. Quantitative Coronary Imaging. Rotterdam: Barjesteh/Meeuwes, 1995; 211–226.

    Google Scholar 

  62. Sonka M, Zhang X, Siebes M, Bissing MS, DeJong S, Collins SM, McKay R. Segmentation of intravascular ultrasound images: A knowledge-based approach. IEEE Trans Med Imaging 1995; 14: 719–732.

    Google Scholar 

  63. Dijkstra J, Wahle A, Koning G, Reiber JHC, Sonka M. Quantitative coronary ultrasound: state of the art. In: Reiber JHC, van der Wall EE, editors. What's New in Cardiovascular Imaging? Dordrecht: Kluwer, 1998; 79–94.

    Google Scholar 

  64. Roelandt JRTC, Mario CD, Pandian NG, Li W, Keane D, Slager CJ, de Feyter PW, Serruys PW. Three-dimensional reconstruction of intracoronary ultrasound images; rationale, approaches, problems, and directions. Circulation 1994; 90: 1044–1055.

    Google Scholar 

  65. Maurincomme E, Finet G. What are the advantages and limitations of three-dimensional intracoronary ultrasound imaging? In: Reiber JHC, van der Wall EE, editors. Cardiovascular Imaging. Dordrecht: Kluwer, 1996; 243–255.

    Google Scholar 

  66. Laban M, Oomen JA, Slager CJ, Wentzel JJ, Krams R, Schuurbiers JCH, den Boer A, von Birgelen C, Serruys PW, de Feyter PJ. ANGUS: A new approach to three-dimensional reconstruction of coronary vessels by combined use of angiography and intravascular ultrasound. Proc Computers in Cardiology, Vienna, Austria, 1995; 325–328.

  67. Bruining N, von Birgelen C, Mallus MT, de Feyter PJ, de Vrey E, Li W, Prati F, Serruys PW, Roelandt JRTC. ECG-gated ICUS image acquisition combined with a semi-automated contour detection provides accurate analysis of vessel dimensions. Proc Computers in Cardiology-1996, Indianapolis, Indiana: 53–56, 1996.

  68. Evans JL, Ng KH, Wiet SG, Vonesh MJ, Burns WB, Radvany MG, Kane J, Davidson CJ, Roth SI, Kramer BL, Meyers SN, McPherson DD. Accurate three-dimensional reconstruction of intravascular ultrasound data; spatially correct three-dimensional reconstructions. Circulation 1996; 93: 567–576.

    Google Scholar 

  69. Wahle A, Prause GPM, DeJong SC, Sonka M. 3-D fusion of biplane angiography and intravascular ultrasound for accurate visualization and volumetry. Proc MICCAI '98, First International Conference on Medical Image Computing and Computer-Assisted Intervention, 1998; 146–155.

  70. Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine Vision. Pacific Grove, CA: PWS, 2nd edition, 1998. (1st edition Chapman and Hall, London, 1993.)

    Google Scholar 

  71. Slager CJ, Laban M, von Birgelen C, Krams R, Oomen JAF, den Boer A, Li P, de Feyter J, Serruys PW, Roelandt JRTC. ANGUS: a new approach to three-dimensional reconstruction of geometry and orientation of coronary lumen and plaque by combined use of coronary angiography and IVUS. JACC 1995; 25: 144A.

    Google Scholar 

  72. von Birgelen C, Mario CD, Li W, Schuurbiers JC, Slager CJ, de Feyter PJ, Roelandt JR, Serruys PW. Morphometric analysis in three-dimensional intracoronary ultrasound: an in vitro and in vivo study performed with a novel system for the contour detection of lumen and plaque. Am Heart J 1996; 132: 516–527.

    Google Scholar 

  73. Herrington DM, Johnson T, Santago P, Snyder WE. Semiautomated boundary detection for intravascular ultrasound. Proc Computers in Cardiology-1992, Durham, North Carolina, 1992; 103–106.

  74. Meier DS, Cothren RM, Vince DG, Cornhill JF. Automated morphometry of coronary arteries with digital image analysis of intravascular ultrasound. Am Heart J 1997; 133: 681–690.

    Google Scholar 

  75. Mojsilovic A, Popovic M, Amodaj M, Babic R, Ostojic M. Automatic segmentation of intravascular ultrasound images; a texture-based approach. Annals of Biomedical Engineering 1997; 25: 1059–1071.

    Google Scholar 

  76. Shekhar R, Cothren RM, Vince DG, Cornhill JF. Fusion of Intravascular Ultrasound and Biplane Angiography for Three-Dimensional Reconstruction of Coronary Arteries, Proc Computers in Cardiology, Indianapolis, Indiana, 1996; 5–8.

  77. Sonka M, Zhang X, Siebes M, Chada RR, McKay CR, Collins SM. Automated detection of wall and plaque borders in intravascular ultrasound images. Proc SPIE 1994; 2168: 13–22.

    Google Scholar 

  78. Sonka M, Zhang X, Siebes M, Bissing MS, DeJong S, Collins SM, McKay R. Semi-automated detection of coronary arterial wall and plaque borders in intravascular ultrasound images (abstract). Circulation 1994; 90: I-550.

    Google Scholar 

  79. Sonka M, Liang W, Zhang X, DeJong S, Collins SM, McKay CR. Three-dimensional automated segmentation of coronary wall and plaque from intravascular ultrasound pullback sequences. Proc Computers in Cardiology, Vienna, Austria, 1995; 637–640.

  80. Zhang X, McKay CR, Sonka M. Tissue characterization in intravascular ultrasound Images. IEEE Trans Med Imaging 1998; 17: 889–899.

    Google Scholar 

  81. Wahle A, Prause GPM, DeJong SC, Sonka M. Limitations of the manual pullback in intracoronary ultrasound imaging. In Proc 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Hong Kong, 1998; no. 1.8.2–30: 506–509.

  82. Prause GPM, DeJong SC, McKay CR, Sonka M. Semi-automated segmentation and 3-D reconstruction of coronary trees: biplane angiography and intravascular ultrasound data fusion. Proc SPIE 1996; 2709: 82–92.

    Google Scholar 

  83. Prause GPM, DeJong SC, McKay CR, Sonka M. Towards a geometrically correct 3-D reconstruction of tortuous coronary arteries based on biplane angiography and intravascular ultrasound. International Journal of Cardiac Imaging 1997; 13: 451–462.

    Google Scholar 

  84. Wahle A, Prause GPM, DeJong SC, Sonka M. Determination of the absolute axial orientation of intracoronary ultrasound images in fusion with biplane angiography. In Proc Computers in Cardiology, Ohio: Cleveland, 1998. (in press).

    Google Scholar 

  85. Wahle A, Prause GPM, DeJong SC, Sonka M. A comprehensive method for geometrically correct 3-D reconstruction of coronary arteries by fusion of intravascular ultrasound and biplane angiography. Proc First International Workshop for Computer Aided Diagnosis, Chicago, Illinois. 1998 (in press).

  86. Hoffmann KR, Chen SYJ, Esthappan J, Williams BB, Metz CE, Harauchi H, Carroll JD. Evaluation of the reliability of calculated 3D vascular trees from their alignment with other views. Proc Computers in Cardiology, Indianapolis, Indiana, 1996; 113–116.

  87. MacKay SA, Potel MJ, Rubin JM. Graphics methods for tracking three-dimensional heart wall motion. Comp and Biomedical Research 1982; 15: 455–473.

    Google Scholar 

  88. Chen SYJ, Carroll JD. Dynamic reconstruction of 3-D coronary arterial trees based on a sequence of biplane angiograms. Proc SPIE 1997; 3034: 358–368.

    Google Scholar 

  89. Hoffmann KR, Williams BB, Esthappan J, Chen SYJ, Carroll JD, Harauchi H, Doerr V, Kay GN, Eberhardt A, Overland M. Determination of 3D positions of pacemaker leads from biplane angiographic sequences. Med Phys 1997; 24: 1854–1862.

    Google Scholar 

  90. Hoffmann KR, Williams BB, Esthappan J, Chen SYJ, Fiebich M, Carroll JD, Harauchi H, Doerr V, Kay GN, Eberhardt A, Overland M. Analysis of 3D motion of in-vivo pacemaker leads. Proc SPIE 1997; 3034: 594–598.

    Google Scholar 

  91. Hawkes DJ, Seifalian AM, Colchester AC, Iqbal N, Hardingham CR, Bladin CF, Hobbs KE. Validation of volume blood flow measurements using three-dimensional distance-concentration functions derived from digital X-ray angiograms. Investigative Radiology 1994; 29: 434–42.

    Google Scholar 

  92. Rasheed Q, Dhawale PJ, Anderson J, Hodgson HM. Intracoronary ultrasound-defined plaque composition: computer-aided plaque characterization and correlation with histologic samples obtained during directional coronary atherectomy. Am Heart J 1995; 129: 631–637.

    Google Scholar 

  93. Herment A, Pellot C, Giovannelli JF. Applications of regularization methods to cardiovascular imaging. In: Yves Goussard, editor. Medical Imaging Processing: from pixel to structure, Coopoly, Montreal, 1997; 28–55.

  94. Wahle A, Mitchell SC, von Birgelen C, Erbel R, Sonka M. On-Site 3D Reconstruction and Visualization of Intravascular Ultrasound based upon Fusion with Biplane Angiography. In: Lemke HU, Vannier MW, Inamura K, Farman AG, editors. Computer Assisted Radiology and Surgery ({CARS} '99) Amsterdam: Elsevier, 1999; 56–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, K.R., Wahle, A., Pellot-Barakat, C. et al. Biplane X-ray angiograms, intravascular ultrasound, and 3D visualization of coronary vessels. Int J Cardiovasc Imaging 15, 495–512 (1999). https://doi.org/10.1023/A:1006372704091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006372704091

Navigation