Journal of Atmospheric Chemistry

, Volume 38, Issue 2, pp 115–132 | Cite as

High Acetone Concentrations throughout the 0–12 km Altitude Range over the Tropical Rainforest in Surinam

  • U. Pöschl
  • J. Williams
  • P. Hoor
  • H. Fischer
  • P. J. Crutzen
  • C. Warneke
  • R. Holzinger
  • A. Hansel
  • A. Jordan
  • W. Lindinger
  • H. A. Scheeren
  • W. Peters
  • J. Lelieveld
Article

Abstract

Airborne measurements of acetone were performed overthe tropical rainforest in Surinam(2°–7° N, 54°–58° W, 0–12 kmaltitude) during the LBA-CLAIRE campaign in March1998, using a novel proton transfer reaction massspectrometer (PTR-MS) that enables the on-linemonitoring of volatile organic compounds (VOC) with ahigher proton affinity than water. The measuredacetone volume mixing ratios ranged from ∼0.1 nmol/molup to ∼8 nmol/mol with an overall average of 2.6nmol/mol and a standard deviation of 1.0 nmol/mol. Theobserved altitude profile and correlations with CO,acetonitrile, propane and wind direction are discussedwith respect to potential acetone sources. No linearcorrelation between acetone and CO mixing ratios wasobserved, at variance with results of previousmeasurement campaigns. The mean acetone/CO ratio(0.022) was substantially higher than typical valuesfound before. The abundance of acetone appears to beinfluenced, but not dominated, by biomass burning,thus suggesting large emissions of acetone and/oracetone precursors, such as possibly 2-propanol, fromliving plants or decaying litter in the rainforest.

acetone tropical rainforest emissions proton-transfer reaction mass spectrometry carbon monoxide acetonitrile 2-propanol biomass burning Surinam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, F., Bürger, V., Drostefanke, B., Grimm, F., Krieger, A., Schneider, J., and Stilp, T., 1997: Acetone in the upper troposphere and lower stratosphere-impact on trace gases and aerosols, Geophys. Res. Lett. 24, 3017–3020.Google Scholar
  2. Arnold, F., Schneider, J., Gollinger, K., Schlager, H., Schulte, P., Hagen, D. E., Whitefield, P. D., and van Velthoven, P., 1997: Observation of upper tropospheric sulfur dioxide-and acetone-pollution: potential implications for hydroxyl radical and aerosol formation, Geophys. Res. Lett. 24, 57–60.Google Scholar
  3. Aschmann, S. M., Reissell, A., Atkinson, R., and Arey, J., 1998: Products of the gas phase reactions of the OH radical with alpha-and beta-pinene in the presence of NO, J. Geophys. Res. 103, 25553–25561.Google Scholar
  4. Atkinson, R., 1994: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data 2, 1–216.Google Scholar
  5. Atkinson, R., 1997: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data 26, 215–290.Google Scholar
  6. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry, J. Phys. Chem. Ref. Data 26, 521–1011.Google Scholar
  7. Bregman, A., Arnold, F., Burger, V., Fischer, H., Lelieveld, J., Scheeren, B. A., Schneider, J., Siegmund, P. C., Strom, J., and Waibel, A., 1997: In situ trace gas and particle measurements in the summer lower stratosphere during Stream II-implications for O3 production, J. Atmos. Chem. 26, 275–310.Google Scholar
  8. Brühl, C. and Crutzen, P. J., 1989: On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation, Geophys. Res. Lett. 16, 703–706.Google Scholar
  9. Chatfield, R. B. and Crutzen, P. J., 1984: Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors, J. Geophys. Res. 89, 7111–7132.Google Scholar
  10. Gregoire, J.-M., Glenat, B., Janvier, P., Janodet, E., Tournier, A., and Silva, J. M. N., 1998: Fire activity in the Guiana Shield, the Orinoco and Amazon Basin during March 1998, Joint Research Center, European Commision, 1998.Google Scholar
  11. Hansel A., Jordan, A., Warneke, C., Holzinger, R., and Lindinger, W., 1998: Improved detection limit of the Proton-Transfer-Reaction Mass-Spectrometer (PTR-MS): On-line monitoring of volatile organic compounds at mixing ratios of 10 pptv, Rapid Communic. Mass Spectrom. 12, 871–875.Google Scholar
  12. Holzinger, R., Warneke, C., Hansel, A., Jordan, A., Lindinger, W., Scharffe, D., Schade, G., and Crutzen, P. J.: 1998, Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide, Geophys. Res. Lett., submitted.Google Scholar
  13. Kanakidou, M., Singh, H. B., Valentin, K. M., and Crutzen, P. J., 1991: A two-dimensional study of ethane and propane oxidation in the troposphere, J. Geophys. Res. 96, 15395–15413.Google Scholar
  14. Kirstine, W., Galbally, I., Ye, Y. R., and Hooper, M., 1998: Emissions of volatile organic compounds (primarily oxygenated species) from pasture, J. Geophys. Res. 103, 10605–10619.Google Scholar
  15. Kuhn, U., Wolf, A., Kesselmaier, J., Andreae, M. O., Ciccioli, P., Guenther, A., Greenberg, J., Tavares, T., Artaxo, P., and Longo, K., 1998: Atmospheric non-methane hydrocarbons at a remote tropical forest site in Central Amazonia, AGU Fall Meeting, San Francisco.Google Scholar
  16. Kwok, E. S. C. and Atkinson, R., 1995: Estimation of hydroxyl radical reaction rate constants for gasphase organic compounds using a structure-reactivity relationship: an update, Atmos. Environ. 29, 1685–1695.Google Scholar
  17. Lelieveld, J., Bregman, B., Arnold, F., Burger, V., Crutzen, P. J., Fischer, H., Waibel, A., Siegmund, P., and Vanvelthoven, P. F. J., 1997: Chemical perturbation of the lowermost stratosphere through exchange with the troposphere, Geophys. Res. Lett. 24, 603–606.Google Scholar
  18. Lindinger, W., Hansel, A., and Jordan, A., 1998: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS)-medical applications, food control and environmental research, Int. J. Mass Spectrom. Ion Proc. 173, 191–241.Google Scholar
  19. Lobert, J. M., Scharffe, D. H., Hao, W. M., and Crutzen, P. J., 1990: Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases, Nature 346, 552–554.Google Scholar
  20. Mauzerall, D. L., Logan, J. A., Jacob, D. J., Anderson, B. E., Blake, D. R., Bradshaw, J. D., Heikes, B., Sachse, G. W., Singh, H., and Talbot, B., 1998: Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic, J. Geophys. Res. 103, 8401–8423.Google Scholar
  21. McKeen, S. A., Gierczak, T., Burkholder, J. B., Wennberg, P. O., Hanisco, T. F., Keim, E. R., Gao, R. S., Liu, S. C., Ravishankara, A. R., and Fahey, D.W., 1997: The photochemistry of acetone in the upper troposphere-a source of odd-hydrogen radicals, Geophys. Res. Lett. 24, 3177–3180.Google Scholar
  22. Möhler, O., Reiner, Th., and Arnold, F., 1993: A novel aircraft-based tandem mass spectrometer for atmospheric and trace gas measurements, Rev. Sci. Instrum. 64, 1199–1207.Google Scholar
  23. Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J., 1997: World Wide Web site of a Master Chemical Mechanism (MCM) for use in tropospheric chemistry models, Atmos. Environ. 31, 1249.Google Scholar
  24. Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J., 1995: High concentrations and photochemical fate of oxygenated hydrocarbons in the global atmosphere, Nature 378, 50–54.Google Scholar
  25. Singh, H. B., O'Hara, D., Herlth, D., Sachse, W., Blake, D. R., Bradshaw, J. D., Kanakidou, M., and Crutzen, P. J., 1994: Acetone in the atmosphere: distribution, sources, and sinks, J. Geophys. Res. 99, 1805–1819.Google Scholar
  26. Warneke, C., Holzinger, R., Hansel, A., Jordan, A., Lindinger, W., Pöschl, U., Williams, J., Hoor, P., Fischer, H., Crutzen, P. J., Scheeren, B., and Lelieveld, J., 2001: Isoprene and its oxidation products measured on-line over the tropical rainforest of Surinam, J. Atmos. Chem., this issue.Google Scholar
  27. Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., Lindinger, W., and Crutzen, P. J., 1999: Acetone, methanol and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: significance for atmospheric chemistry, Global Biogeochem. Cycles 13, 9–15.Google Scholar
  28. Wennberg, P. O., Hanisco, T. F., Jaegle, L., Jacob, D. J., Hintsa, E.J., Lanzendorf, E. J., Anderson, J. G., Gao, R. S., Keim, E. R., and Donnelly, S. G., 1998: Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere, Science 279, 49–53.Google Scholar
  29. Wienhold, F. G., Fischer, H., Hoor, P., Wagner, V., Konigstedt, R., Harris, G. W., Anders, J., Grisar, R., Knothe, M., and Riedel, W. J., 1998: Tristar-a tracer in situ TDLAS for atmospheric research, Appl. Phys. B Lasers Optics 67, 411–417.Google Scholar
  30. Williams, J., Pöschl, U., Crutzen, P. J., Hansel, A., Holzinger, R., Warneke, C., Lindinger, W., and Lelieveld, J., 2001: An atmospheric chemistry interpretation of mass scans obtained from a proton transfer mass spectrometer flown over the tropical rainforest of Surinam, J. Atmos. Chem., this issue.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • U. Pöschl
    • 1
    • 2
  • J. Williams
    • 1
  • P. Hoor
    • 1
  • H. Fischer
    • 1
  • P. J. Crutzen
    • 1
  • C. Warneke
    • 3
  • R. Holzinger
    • 3
  • A. Hansel
    • 3
  • A. Jordan
    • 3
  • W. Lindinger
    • 3
  • H. A. Scheeren
    • 4
  • W. Peters
    • 4
  • J. Lelieveld
    • 4
  1. 1.Department of Atmospheric ChemistryMax-Planck-Institute for ChemistryMainzGermany
  2. 2.Institute of HydrochemistryTechnical University of MunichMunichGermany
  3. 3.Institute of Ion PhysicsInnsbruck UniversityInnsbruckAustria
  4. 4.Institute for Marine and Atmospheric Research Utrecht (IMAU)CC UtrechtThe Netherlands

Personalised recommendations