Skip to main content
Log in

Expression and sequence requirements for nitrite reductase co–suppression

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have previously reported that the introduction of a full-length tobacco nitrite reductase Nii1 cDNA under the control of the 35S promoter triggers co-suppression of endogenous Nii genes in 25% of tobacco transformants. Here we show that introduction of chimeric Nii1-uidA, uidA-Nii1 and Nii1-uidA-Nii1 transgenes carrying 186 bp of the 5′ end and/or 241 bp of the 3′ end of the Nii1 cDNA do not trigger co-suppression of endogenous Nii genes. In addition, we show that when introduced by crossing or transformation into co-suppressed transgenic tobacco lines carrying full-length Nii1 transgenes, these chimeric transgenes are not silenced. These results therefore suggest that the 5′ and 3′ ends of the Nii1 cDNA are not sufficient to trigger co-suppression and are not targets for homology-dependent RNA degradation. Surprisingly, co-suppression was released in a double transformant obtained by introduction of one of these constructs into the co-suppressed transgenic tobacco line 461-2.1 homozygous for a full-length Nii1 transgene, and in one plant regenerated from untransformed leaf discs (plant 461-2.1*). The reappearance of co-suppression at very low frequency (less than 10−3) in the F2 progeny of plant 461-2.1* and the apparent absence of structural modification of the transgene locus suggest a metastable epigenetic modification. The steady-state level of Nii mRNAs in the plant 461-2-.1* was higher than in wild-type plants but lower than in hemizygous plants 461-2.1 which never trigger silencing. These results therefore confirm that transcription of the transgene above a particular threshold is required to trigger co-suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bourgin, J.P., Chupeau, Y. and Missonier, C. 1979. Plant regeneration from mesophyll protoplasts of several Nicotiana species. Physiol. Plant. 45: 288-292.

    Google Scholar 

  • Boutry, M. and Chua, N.M. 1985. A nuclear gene encoding the _ subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia. EMBO J. 4: 2159-2165.

    Google Scholar 

  • Bullock, W.O., Fernandez, J.M. and Short, J.M. 1987. XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5: 376-378.

    Google Scholar 

  • Coïc, Y. and Lesaint, C. 1971. Comment assurer une bonne nutrition en eau et ions minéraux en horticulture. Hort. Fr. 8: 11-14.

    Google Scholar 

  • Crété, P., Caboche, M. and Meyer, C. 1997. Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant J. 11: 625-634.

    Google Scholar 

  • de Caravalho, F., Gheysen, G., Kushnir, S., Van Montagu, M., Inzé, D. and Castresana, C. 1992. Suppression of _-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11: 2595-2602.

    Google Scholar 

  • Depicker, A. and Van Montagu, M. 1997. Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9: 373-382.

    Google Scholar 

  • Dorlhac de Borne, F., Vincentz, M., Chupeau, Y. and Vaucheret, H. 1994. Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants. Mol. Gen. Genet. 243: 613-621.

    Google Scholar 

  • Dougherty, W.G. and Parks, T.D. 1995. Transgenes and gene suppression: telling us something new? Curr. Opin. Cell Biol. 7: 399-405.

    Google Scholar 

  • Elmayan, T. and Vaucheret, H. 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J. 9: 787-797.

    Google Scholar 

  • English, J.J. and Baulcombe, D.C. 1997. The influence of small changes in transgene transcription on homology-dependent virus resistance and gene silencing. Plant J. 12: 1311-1318.

    Google Scholar 

  • English, J.J., Mueller, E. and Baulcombe, D.C. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8: 179-188.

    Google Scholar 

  • Goodwin, J., Chapman, K., Swaney, S., Parks, T.D., Wernsman, E.A. and Dougherty, W.G. 1996. Genetic and biochemical dissection of transgenic RNA-mediated virus resistance. Plant Cell 8: 95-105.

    Google Scholar 

  • Grierson, D., Fray, R.G., Hamilton, A.J., Smith, C.J.S. and Watson, C.F. 1991. Does co-suppression of sense genes in transgenic plants involve antisense RNA? Trends Biotechnol. 9: 122-123.

    Google Scholar 

  • Gritz, L. and Davies, J. 1983. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 25: 179-188.

    Google Scholar 

  • Hobbs, S.L.A., Kpodar, P. and Delong, C.M.O. 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol. 21: 17-26.

    Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffman, N.L., Eicholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229-1231.

    Google Scholar 

  • Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405.

    Google Scholar 

  • Jorgensen, R. 1992. Silencing of plant genes by homologous transgenes. AgBiotech. News Inf. 4: 265N-273N.

    Google Scholar 

  • Jorgensen, R., Cluster, P.D., English, J., Que, Q. and Napoli, C. 1996. Chalcone synthase co-suppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and singlecopy vs. complex T-DNA sequences. Plant Mol. Biol. 31: 957-973.

    Google Scholar 

  • Kronenberger, J., Lepingle, A., Caboche, M. and Vaucheret, H. 1993. Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol. Gen. Genet. 236: 203-208.

    Google Scholar 

  • Lee, K.Y., Baden, C., Howie, W.J., Bedbrook, J. and Dunsmuir, P. 1997. Post-transcriptional gene silencing of ACC synthase in tomato results from cytoplasmic RNA degradation. Plant J. 12: 1127-1137.

    Google Scholar 

  • Meins, F. Jr. and Kunz, C. 1994. Silencing of chitinase expression in transgenic plants: an autoregulatory model. In: J. Paszkowski (Ed.), Homologous Recombination and Gene Silencing in Plants, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 335-348.

    Google Scholar 

  • Metzlaff, M., O'Dell, M., Cluster, P.D. and Flavell, R.B. 1997. RNA-mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88: 1-20.

    Google Scholar 

  • Meyer, P. 1995. Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  • Meyer, P., Heidmann, I. and Niedenhof, I. 1993. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 4: 89-100.

    Google Scholar 

  • Neuhuber, F., Park, Y.D., Matzke, A.J.M. and Matzke, M.A. 1994. Susceptibility of transgene loci to homology-dependent gene silencing. Mol. Gen. Genet. 244: 230-241.

    Google Scholar 

  • Palauqui, J.-C., Elmayan, T., Dorlhac de Borne, F., Crété, P., Charles, C. and Vaucheret, H. 1996. Frequencies, timing, and spatial patterns of co-suppression of nitratre reductase and nitrite reductase in transgenic tobacco plants. Plant Physiol. 112: 1447-1456.

    Google Scholar 

  • Pang, S.Z., Jan, F.J. and Gonsalves, D. 1997. Nontarget DNA sequences reduce the transgene length necessary for RNAmediated tospovirus resistance in transgenic plants. Proc. Natl. Acad. Sci. USA 94: 8261-8266.

    Google Scholar 

  • Park, Y.D., Papp, I., Moscone, E.A., Iglesias, V.A., Vaucheret, H., Matzke, A.J.M. and Matzke, M.A. 1996. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 9: 183-194.

    Google Scholar 

  • Schiebel, W., Pélissier, T., Riedel, L., Thalmeir, S., Schiebel, R., Kempe, D., Lottspeich, F., Sänger, H.L. and Wasseneger, M. 1998. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. Plant Cell 10: 2087-2101.

    Google Scholar 

  • Seymour, G.B., Fray, R.G., Hill, P. and Tucker, G.A. 1993. Downregulation of two non-homologous endogenous tomato genes with a single chimeric sense gene construct. Plant Mol. Biol. 23: 1-9.

    Google Scholar 

  • Sijen, T., Wellinck, J., Hiriart, J.B. and van Kammen, A. 1996. RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regions. Plant Cell 8: 2277-2294.

    Google Scholar 

  • Stam, M., Mol, J.N.M. and Kooter, J.M. 1997. The silence of genes in transgenic plants. Ann. Bot. 79: 3-12.

    Google Scholar 

  • Tanzer, M.M., Thompson, W.F., Law, M.D., Wernsman, E.A. and Uknes, S. 1997. Characterization of post-transcriptionally suppressed transgene expression that confers resistance to tobacco etch virus infection in tobacco. Plant Cell 9: 1411-1423.

    Google Scholar 

  • Topfer, R., Matzeit, V., Gronenborn, B., Schell, J. and Steinbiss, H.H. 1987. A set of plant expression vectors for transcriptional and translational fusions. Nucl. Acids Res. 14: 5890.

    Google Scholar 

  • van Blokland, R., Vandergeest, N., Mol, J.N.M. and Kooter, J.M. 1994. Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 6: 861-877.

    Google Scholar 

  • Vaucheret, H. 1993. Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant-90 bp of homology in the promoter sequence are sufficient for trans-inactivation. C.R.A. Acad. Paris Sci. III 316: 1471-1483.

    Google Scholar 

  • Vaucheret, H., Palauqui, J.C., Elmayan, T. and Moffatt, B. 1995. Molecular and genetic analysis of nitrite reductase cosuppression in trangenic tobacco plants. Mol. Gen. Genet. 248: 311-317.

    Google Scholar 

  • Voinnet, O., Vain, P., Angell, S. and Baulcombe, D.C. 1998. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95: 177-187.

    Google Scholar 

  • Wasseneger, M. and Pélissier, T. 1998. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol. 37: 349-362.

    Google Scholar 

  • Wasseneer, M., Heimes, S., Riedel, L. and Sänger, H.L. 1994. RNAdirected de novo methylation of genomic sequences in plants. Cell 76: 567-576.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crété, P., Vaucheret, H. Expression and sequence requirements for nitrite reductase co–suppression. Plant Mol Biol 41, 105–114 (1999). https://doi.org/10.1023/A:1006364323494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006364323494

Navigation