Skip to main content
Log in

Cardiac phase contrast gradient echo MRI: measurement of myocardial wall motion in healthy volunteers and patients

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

A number of methods have been proposed for the noninvasive measurement of myocardial wall motion. The paper describes a strategy for assessing myocardial motion based on the sensitivity of the phase of the MR-signal to motion using a breath-hold phase contrast technique. A motion-sensitized and a motion-compensated MR-signal are measured during successive scans. The difference between the two MR-signals is used to calculate myocardial velocity in all three spatial dimensions. Postprocessing includes the transformation of the measured velocities into an internal coordinate system of the left ventricle. Also various presentation modes and further processing of the received velocity information are provided including calculation of global motion parameters. We examined 20 patients suffering from myocardial infarction. The overall left ventricular motion can be characterized by appropriate parameters describing the rotation and contraction or expansion, respectively. Regional motional disturbances are visualized using parametric images. Contrary to the highly consistent interindividual data in normal volunteers, patients showed significant localized motion deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McVeigh ER. MRI of myocardial function: motion tracking techniques. Magnetic Resonance Imaging 1996; 14: 137–150.

    Google Scholar 

  2. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging — a method for noninvasive assessment of myocardial motion. Radiology 1988; 169: 59–63.

    Google Scholar 

  3. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology 1989; 171: 841–845.

    Google Scholar 

  4. Schmid P, Stuber M, Boesiger P, Hess OM, Niederer P. Determination of displacement, stress-and strain-distribution in the human heart: a FE-model on the basis of MR imaging. Technology & Health Care 1995; 3: 209–214.

    Google Scholar 

  5. Axel L, Goncalves RC, Bloomgarden D. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology 1992; 183: 745–750.

    Google Scholar 

  6. Bazille A, Guttman MA, McVeigh ER, Zerhouni EA. Impact of semiautomated versus manual image segmentation errors on myocardial strain calculation by magnetic resonance tagging. Investigative Radiology 1994; 29(4): 427–433.

    Google Scholar 

  7. Fogel MA, Gupta KB, Weinberg PM, Hoffmann EA. Regional wall motion and strain analysis across stages of Fontan reconstruction by magnetic resonance tagging. American Journal of Physiology 1995; 269: 1132–1152.

    Google Scholar 

  8. Maier SE, Fischer SE, McKinnon GC, Hess OM, Krayenbuehl HP, Boesiger P. Acquisition and evaluation of tagged magnetic resonance images of the human left ventricle. Computerized Medical Imaging & Graphics 1992; 16: 73–80.

    Google Scholar 

  9. McVeigh ER, Zerhouni EA. Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 1991; 180: 677–683.

    Google Scholar 

  10. Moore CC, O'Dell WG, McVeigh ER, Zerhouni EA. Calculation of three-dimensional left ventricular strains from biplanar tagged MR images. Journal of Magnetic Resonance Imaging 1992; 2: 165–175.

    Google Scholar 

  11. O'Dell WG, Moore CC, Hunter WC, Zerhouni EA, McVeigh ER. Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 1995; 195: 829–835.

    Google Scholar 

  12. MacGowan GA, Burkho. D, Rogers WJ, Salvador D, Azhari H, Hees PS, Zweier JL, Halperin HR, Siu CO, Lima JA, Weiss JL, Shapiro EP. Effects of afterload on regional left ventricular torsion. Cardiovascular Research 1996; 31: 917–925.

    Google Scholar 

  13. Kramer CM, Rogers WJ, Theobald TM, Power TP, Petruolo S, Reichek N. Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation 1996; 94: 660–666.

    Google Scholar 

  14. Azhari H, Weiss JL, Shapiro EP. Distribution of myocardial strains: an MRI study. Advances in Experimental Medicine & Biology 1995; 382: 319–328.

    Google Scholar 

  15. Lima JA, Ferrari VA, Reichek N, Kramer CM, Palmon L, Llaneras MR, Tallant B, Young AA, Axel L. Segmental motion and deformation of transmurally infarcted myocardium in acute postinfarct period. American Journal of Physiology 1995; 268: H1304-H1312.

    Google Scholar 

  16. Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 1994; 90: 854–867.

    Google Scholar 

  17. Kramer CM, Lima JA, Reichek N, Ferrari VA, Llaneras MR, Palmon LC, Yeh IT, Tallant B, Axel L. Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 1993; 88: 1279–1288.

    Google Scholar 

  18. Young AA, Imai H, Chang CN, Axel L. Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization. Circulation 1994; 89: 740–752. [published erratum appears in Circulation 1994 Sep; 90(3): 1584].

    Google Scholar 

  19. Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 1994; 90: 854–867.

    Google Scholar 

  20. Maier SE, Fischer SE, McKinnon GC, Hess OM, Krayenbuehl HP, Boesiger P. Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 1992; 86: 1919–1928.

    Google Scholar 

  21. Hennig J. Generalized MR interferography. Magnetic Resonance in Medicine 1990; 16: 390–402.

    Google Scholar 

  22. Peschl S, Strecker R, Büchert M, Krause T, Hennig J. Measurement of heart wall motion with MR Interferography. Proceedings of the Fourth Annual Meeting, ISMRM, New York 1996; p. 296.

    Google Scholar 

  23. Firmin DN, Nayler GL, Kilner PJ, Longmore DB. The application of phase shifts in NMR for flow measurement. Magnetic Resonance in Medicine 1990; 14: 230–241.

    Google Scholar 

  24. Pelc LR, Sayre J, Yun K, Castro LJ, Herfkens RJ, Miller DC, Pelc NJ. Evaluation of myocardial motion tracking with cine-phase contrast magnetic resonance imaging. Investigative Radiology 1994; 29: 1038–1042.

    Google Scholar 

  25. Pelc NJ, Drangova M, Pelc LR, Zhu Y, Noll DC, Bowman BS, Herfkens RJ. Tracking of cyclic motion with phase-contrast cine MR velocity data. Journal of Magnetic Resonance Imaging 1995; 5: 339–345.

    Google Scholar 

  26. Hennig J, Schneider B, Peschl S, Markl M, Krause T, Laubenberger J. Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient-echo sequence: methodology and applications to normal volunteers and patients. Journal of Magnetic Resonance Imaging 1998; 8 (4, July): 868–877.

    Google Scholar 

  27. Van der Geest RJ, Kayser HWM, van der Wall EE, Reiber JMC, de Roos A. Measurement of regional and transmural variation in left ventricular myocardial motion in normal volunteers using 3D velocity encoded cine MRI. Proceedings of sixth Annual Meeting, ISMRM, Sydney 1998.

    Google Scholar 

  28. Kayser HWM, van der Geest RJ, van der Wall EE, Reiber JMC, de Roos A. Assessment of right ventricular wall motion using 3D phase contrast MR velocity mapping. Proceedings of the sixth Annual Meeting, ISMRM, Sydney 1998.

    Google Scholar 

  29. Mansfield P. Multi planar image formation using NMR spin echoes. J Phys C 1977; 10: L55-L58.

    Google Scholar 

  30. Epstein FH, Foo TKF, Wol. SD, Balaban RS, Arai AE. Fast cine imaging using segmented k-space interleaved gradient echo EPI. Proceedings of the sixth Annual Meeting, ISMRM, Sydney 1998.

    Google Scholar 

  31. McKinnon GC, Deatin JF, Wetter DR, v. Schulthess GK. Interleaved echo planar flow quantification. Magnetic Resonance in Medicine 1994; 32: 263–267.

    Google Scholar 

  32. Mc Kinnon GC. Ultrafast interleaved gradient echo planar imaging on a standard scanner. Magnetic Resonance in Medicine 1993; 30: 109–116.

    Google Scholar 

  33. Davis CP, McKinnon GC, Debatin JF, Duewell S, v. Schulthess GK. Single shot versus interleaved echo planar magnetic resonance imaging: application to visualization of cardiac valve leaflets. Journal of Magnetic Resonance Imaging 1995; 5: 107–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markl, M., Schneider, B., Hennig, J. et al. Cardiac phase contrast gradient echo MRI: measurement of myocardial wall motion in healthy volunteers and patients. Int J Cardiovasc Imaging 15, 441–452 (1999). https://doi.org/10.1023/A:1006355106334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006355106334

Navigation