Skip to main content
Log in

Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Mevalonate kinase (MVK), the enzyme that catalyzes the phosphorylation of mevalonate to produce mevalonate 5-phosphate, is considered as a potential regulatory enzyme of the isoprenoid biosynthetic pathway. The Arabidopsis thaliana MVK gene corresponding to the MVK cDNA previously isolated has been cloned and characterized. RNAse protection analysis indicated that the expression of the MVK gene generates three mRNA populations with 5′ ends mapping 203, 254 and 355 nt upstream of the MVK ATG start codon. Northern blot analysis showed that the MVK mRNA accumulates preferentially in roots and inflorescences. Histochemical analysis, with transgenic A. thaliana plants containing a translational fusion of a 1.8 kb fragment of the 5′ region of the MVK gene to the β-glucuronidase (GUS) reporter gene, indicated that the MVK 5′-flanking region directs widespread expression of the GUS gene throughout development, although the highest levels of GUS activity are detected in roots (meristematic region) and flowers (sepals, petals, anthers, style and stigmatic papillae). The expression pattern of the MVK gene suggests that the role of the encoded MVK is the production of a general pool of mevalonate-5-phosphate for the synthesis of different classes of isoprenoids involved in both basic and specialized plant cell functions. Functional promoter deletion analysis in transfected A. thaliana protoplasts indicated that regulatory elements between positions −295 and −194 of the MVK 5′-flanking region are crucial for high-level MVK gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • An, G. 1987. Binary Ti vectors for plant transformation and promoter analysis. Meth. Enzymol. 153: 292–305.

    Google Scholar 

  • Axelos, M., Curie, C., Mazzolini, L., Bardet, C. and Lescure, B. 1992. A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol. Biochem. 30: 123–128.

    Google Scholar 

  • Bach, T.J. 1995. Some new aspects of isoprenoid biosynthesis in plants: a review. Lipids 30: 191–202.

    Google Scholar 

  • Bach, T.J., Boronat, A., Campos, N., Ferrer, A. and Wollack., K.-U. 1997. Mevalonate biosynthesis in plants. In: E.J. Parish and W.D. Nes (Eds.), Biochemistry and Function of Sterols, CRC Press, Boca Raton, FL, pp. 135–150.

    Google Scholar 

  • Bartley, G.E. and Scolnik, P.A. 1995. Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7: 1027–1038.

    Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci., Paris/Life Sci. 316: 1194–1199.

    Google Scholar 

  • Bishop, R.W., Chambliss, K.L., Hoffmann, G.F., Tanaka, R.D. and Gibson K.M. 1998. Characterization of the mevalonate kinase 50-untranslated region provides evidence for coordinate regulation of cholesterol biosynthesis. Biochem. Biophys. Res. Commun. 242: 518–524.

    Google Scholar 

  • Brown, J.W.S., Smith, P. and Simpson, C.G. 1996. Arabidopsis consensus intron sequences. Plant Mol. Biol. 32: 531–535.

    Google Scholar 

  • Burnett, R.J., Maldonado-Mendoza, I.E., McKnight, T.D. and Nessler, C. 1993. Expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate. Plant Physiol. 103: 41–48.

    Google Scholar 

  • Caelles, C., Ferrer, A., Balcells, L., Hegardt, F.G. and Boronat, A. 1989. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol. Biol. 13: 627–638.

    Google Scholar 

  • Campbell, M., Hahn, F.M., Poulter, D. and Leustek, T. 1997. Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana. Plant Mol. Biol. 36: 323–328.

    Google Scholar 

  • Chappell, J. 1995. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 521–547.

    Google Scholar 

  • Choi, D., Ward, B.L. and Bostock, R.M. 1992. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell 4: 1333–1344.

    Google Scholar 

  • Cordier, H., Karst, F. and Berges, T. 1999. Heterologous expression in Saccharomyces cerevisiae of an Arabidopsis thaliana cDNA encoding mevalonate diphosphate decarboxylase. Plant Mol. Biol. 39: 953–967.

    Google Scholar 

  • Cunillera, N., Arró , M., Delourme, D., Karst, F., Boronat, A. and Ferrer, A. 1996. Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J. Biol. Chem. 271: 7774–7780.

    Google Scholar 

  • Cunillera, N., Boronat, A., Ferrer, A. 1997. The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J. Biol. Chem. 272: 15381–15388.

    Google Scholar 

  • Dean, L., Elzen, B., Tamaki, S., Dunsmuir, P., Bedbrook, J. 1985. Differential expression of the eight genes of the petunia ribulose bisphosphate carboxylase small subunit multigene family. EMBO J. 5: 3055–3061.

    Google Scholar 

  • Dellaporta, S.L., Woo, J. and Hicks, J.B. 1984. Molecular Biology of Plants: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 36–37.

    Google Scholar 

  • Dorsey, J.K. and Porter, J.W. 1968. The inhibition of mevalonic kinase by geranyl and farnesyl pyrophosphates. J. Biol. Chem. 243: 4667–4670.

    Google Scholar 

  • Enjuto, M., Balcells, L., Campos, N., Caelles, C., Arró , M. and Boronat, A. 1994. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl coenzyme A reductase genes, which encode microsomal forms of the enzyme. Proc. Natl. Acad. Sci. USA 91: 927–931.

    Google Scholar 

  • Enjuto, M., Lumbreras, V., Marin, C. and Boronat, A. 1995. Expression of the Arabidopsis HMG2 gene, encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase, is restricted to meristematic and floral tissues. Plant Cell 7: 517–527.

    Google Scholar 

  • Gray, J.C. 1987. Control of isoprenoid biosynthesis in higher plants. Adv. Bot. Res. 14: 25–91.

    Google Scholar 

  • Goldstein, J.L. and Brown, M.S. 1990. Regulation of the mevalonate pathway. Nature 343: 425–430.

    Google Scholar 

  • Hinnenbusch, A. 1984. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. USA 81: 6442–6446.

    Google Scholar 

  • Hinson, D.D., Chambliss, K.L., Toth, M.J., Tanaka, R.D. and Gibson, K.M. 1997a. Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways. J. Lipid Res. 38: 2216–2223.

    Google Scholar 

  • Hinson, D.D., Chambliss, K.L., Hoffman, G.F., Krisans, S., Keller, R.K. and Gibson, K.M. 1997b. Identification of an active site alanine in mevalonate kinase through characterization of a novel mutation in mevalonate kinase deficiency. J. Biol. Chem. 272: 26756–26760.

    Google Scholar 

  • Jefferson, R.A. 1987. Assaying chimeric genes in plants. The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Google Scholar 

  • Kingston, R.E. 1997. In: F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl (Eds.), Current Protocols in Molecular Biology, Green/Wiley Interscience, New York, pp. 4.7.1–4.7.8.

    Google Scholar 

  • Korth, K.L., Stermer, B.A., Bhattacharyya, M.K. and Dixon, R.A. 1997. HMG-CoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissues. Plant Mol. Biol. 33: 545–551.

    Google Scholar 

  • Kozak, M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867–19870.

    Google Scholar 

  • Kribii, R., Arró , M., Del Arco, A., González, V., Balcells, L., Ferrer, A., Karst, F. and Boronat, A. 1997. Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase. Involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur. J. Biochem. 249: 61–69.

    Google Scholar 

  • Learned, R.M. and Connolly, E.L. 1997. Light modulates the spatial patterns of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in Arabidopsis thaliana. Plant Physiol. 11: 499–511.

    Google Scholar 

  • Lichtenthaler, H.K., Rohmer, M. and Schwender, J. 1997. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101: 643–652.

    Google Scholar 

  • Lohmer, S., Maddaloni, M., Motto, M., Salamini, F. and Thompson, R.D. 1993. Translation of the mRNA of the maize transcriptional activator Opaque-2 is inhibited by upstream open reading frames present in the leader sequence. Plant Cell 5: 65–73.

    Google Scholar 

  • Lumbreras, V., Campos, N. and Boronat, A. 1995. The use of an alternative promoter in the Arabidopsis thaliana HMG1 gene generates an mRNA that encodes a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase isoform with an extended N-terminal region. Plant J. 8: 541–549.

    Google Scholar 

  • McGarvey, D.J. and Croteau, R. 1995. Terpenoid metabolism. Plant Cell 7: 1015–1026.

    Google Scholar 

  • Oulmouden, A. and Karst, F. 1990. Isolation of the ERG12 gene of Saccharomyces cerevisiae encoding mevalonate kinase. Gene 88: 253–257.

    Google Scholar 

  • Oulmouden, A. and Karst, F. 1991. Nucleotide sequence of the ERG12 gene of Saccharomyces cerevisiae encoding mevalonate kinase. Curr. Genet. 19: 9–14.

    Google Scholar 

  • Potter, D. and Miziorko, H.M. 1997. Identification of catalytic residues in human mevalonate kinase. J. Biol. Chem. 272: 25449–25454.

    Google Scholar 

  • Potter, D., Wojnar, J.M., Chakravarthy, N. and Miziorko, H.M. 1997. Identification and functional characterization of an activesite lysine in mevalonate kinase. J. Biol. Chem. 272: 5741–5746.

    Google Scholar 

  • Pröls, M., Töpfer, R., Schell, J. and Steinbiss, H.H. 1988. Transient gene expression in tobacco protoplasts: time course of CAT appearance. Plant Cell Rep. 7: 221–224.

    Google Scholar 

  • Riou, C., Tourte, Y., Lacroute, F. and Karst, F. 1994. Isolation and characterization of a cDNA encoding Arabidopsis thaliana mevalonate kinase by genetic complementation in yeast. Gene 148: 293–297.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Schafer, B.L., Bishop, R.W., Kratunis, V.J., Kalinowsky, S.S., Mosley, S.T., Gibson, M.K. and Tanaka, R.D. 1992. Molecular cloning of human mevalonate kinase and identification of a missense mutation in the genetic disease mevalonic aciduria. J. Biol. Chem. 267: 13229–13238.

    Google Scholar 

  • Somerville, C.R. and Ogreen, W.L. 1982. In: M.K. Edelman, R.B. Hallick and Chua, N.H. (Eds.), Methods in Chloroplast Molecular Biology, Elsevier Biomedical, New York, pp. 129–138.

    Google Scholar 

  • Stermer, B.A., Bianchini, G.M. and Korth, K.L. 1994. Regulation of HMG-CoA reductase activity in plants. J. Lipid Res. 35: 1133–1140.

    Google Scholar 

  • Tanaka, R.D., Lee, L.Y., Schafer, B.L., Kratunis, V.J., Mohler, W.A., Robinson, G.W. and Mosley, S.T. 1990. Molecular cloning of mevalonate kinase and regulation of its mRNA levels in rat liver. Proc. Natl. Acad. Sci. USA 87: 2872–2876.

    Google Scholar 

  • Zhu, X.-H., Suzuki, K., Saito, T., Okada, K., Tanaka, K., Nakagawa, T., Matsuda, H. and Kawamukai, M. 1997. Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria. Plant Mol. Biol. 35: 331–341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lluch, M.A., Masferrer, A., Arró, M. et al. Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana. Plant Mol Biol 42, 365–376 (2000). https://doi.org/10.1023/A:1006325630792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006325630792

Navigation