Skip to main content
Log in

Contemporary carbon stocks of mineral forest soils in the Swiss Alps

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Soil organic carbon (SOC) has been identified as the main globalterrestrial carbon reservoir, but considerable uncertainty remains as toregional SOC variability and the distribution of C between vegetationand soil. We used gridded forest soil data (8–km × 8–km)representative of Swiss forests in terms of climate and forest typedistribution to analyse spatial patterns of mineral SOC stocks alonggradients in the European Alps for the year 1993. At stand level, meanSOC stocks of 98 t C ha−1 (N = 168,coefficient of variation: 70%) were obtained for the entiremineral soil profile, 76 t C ha−1 (N =137, CV: 50%) in 0–30 cm topsoil, and 62 t Cha−1 (N = 156, CV: 46%) in0–20 cm topsoil. Extrapolating to national scale, we calculatedcontemporary SOC stocks of 110 Tg C (entire mineral soil, standarderror: 6 Tg C), 87 Tg C (0–30 cm topsoil, standarderror: 3.5 Tg C) and 70 Tg C (0–20 cm topsoil, standarderror: 2.5 Tg C) for mineral soils of accessible Swiss forests(1.1399 Mha). According to our estimate, the 0–20 cm layers ofmineral forest soils in Switzerland store about half of the Csequestered by forest trees (136 Tg C) and more than five times morethan organic horizons (13.2 Tg C).

At stand level, regression analyses on the entire data set yielded nostrong climatic or topographic signature for forest SOC stocks in top(0–20 cm) and entire mineral soils across the Alps, despite thewide range of values of site parameters. Similarly, geostatisticalanalyses revealed no clear spatial trends for SOC in Switzerland at thescale of sampling. Using subsets, biotic, abiotic controls andcategorial variables (forest type, region) explained nearly 60%of the SOC variability in topsoil mineral layers (0–20 cm) forbroadleaf stands (N = 56), but only little of thevariability in needleleaf stands (N = 91,R 2 = 0.23 for topsoil layers).

Considerable uncertainties remain in assessments of SOC stocks, due tounquantified errors in soil density and rock fraction, lack of data onwithin-site SOC variability and missing or poorly quantifiedenvironmental control parameters. Considering further spatial SOCvariability, replicate pointwise soil sampling at 8–km × 8–kmresolution without organic horizons will thus hardly allow to detectchanges in SOC stocks in strongly heterogeneous mountain landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AAB (1994) Adhoc Arbeitsgruppe Boden: Bodenkundliche Kartierungsanleitung, Technical Report. Bundesamt für Geowissenschaften & Rohstoffe und Geologische Landesämter der BRD, Hannover

  • Aber JD, Melillo JM & McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canad. J. Botany 68: 2201–2208

    Article  Google Scholar 

  • Alexander EB (1980) Bulk densities of Californian soils in relation to other soil properties. Soil Sci. Soc. Am. J. 44: 689–692

    Article  Google Scholar 

  • Arrouays D, Daroussin J, Kicin JL & Hassinka P (1998) Improving topsoil carbon storage prediction using a digital elevation model in temperate forest soils of France. Soil Sci. 163: 103–108

    Article  Google Scholar 

  • Arrouyas D, Vion I & Kicin JL (1995) Spatial analysis and modeling of topsoil carbon storage in temperate forest humic loamy soils of France. Soil Sci. 159: 191–198

    Article  Google Scholar 

  • Balesdent J, Wagner GH & Mariotti A (1988) Soil organic matter turnover in long-term field experiments as revealed by carbon – 13 natural abundance. Soil Sci. Soc. Am. J. 52: 118–124

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Europ. J. Soil Sci. 47: 151–163

    Article  Google Scholar 

  • Blaser P, Kernebeek P, Tebbens L, Van Breemen N & Luster J (1997) Cryptopodzolic soils in Switzerland. Europ. J. Soil Sci. 48: 411–423

    Article  Google Scholar 

  • BML (1997) Deutscher Waldbodenbericht. Band 2. Technical Report. Bundesministerium für Ernärung, Landwirtschaft und Forsten, Bonn (Germany)

  • Brassel P & Brändli UB (1999) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995. Verlag Paul Haupt, Bern

    Google Scholar 

  • Brzeziecki B, Kienast F & Wildi O (1993) A simulated map of the potential natural forest vegetation of Switzerland. J. Vegetation Sci. 4: 499–508

    Article  Google Scholar 

  • Bugmann H & CramerW(1998) Improving the behaviour of forest gap models along drought gradients. Forest Ecol. Manag. 103: 247–263

    Article  Google Scholar 

  • Bundesamt für Landestopographie B (1994) Geländedaten: DHM25(c) WSL. For more information see Internet site http://www.swisstopo.ch

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K & Schimel DS (1989) Texture, climate and cultivation effects on soil organic matter content in US Grassland soils. Soil Sci. Soc. Am. J. 53: 800–805

    Article  Google Scholar 

  • Burschel P, Kürsten E, Larson BC & Weber M (1993) Present role of German forests and forestry in the national carbon budget and options to its increase. Water Air Soil Pollut. 70: 325–340

    Article  Google Scholar 

  • Cochran WG (1977) Sampling Techniques. John Wiley & Sons, New York

    Google Scholar 

  • Curtis RO & Post BW (1964) Estimating bulk density from organic matter content in some Vermont forest soils. Soil Sci. Soc. Am. Proc. 28: 285–286

    Article  Google Scholar 

  • Datta DK, Gupta SK, Nath S & Banerjee SK (1989). Variations in the characteristics and nutrient status of soils of the eastern Himalayas as influenced by elevation. Int. J. Tropical Agricult. 7: 208–215

    Google Scholar 

  • Davidson EA (1995) Spatial covariation of soil organic carbon, clay content, and drainage class at a regional scale. Landscape Ecol. 10: 349–362

    Article  Google Scholar 

  • Davidson EA & Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20: 161–193

    Article  Google Scholar 

  • Dixon RK, Brown S,H oughton RA, Solomon AM, Trexler MC & Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263: 185–190

    Article  Google Scholar 

  • EAFV (1988) Schweizerisches Landesforstinventar: Ergebnisse der Erstaufnahme 1982– 1986. Bericht 305. Eidgenössische Anstalt für das Forstliche Versuchswesen, Birmensdorf (Switzerland)

  • Ellenberg H & Klötzli F (1972) Waldgesellschaften und Waldstandorte der Schweiz. Eidgenössische Anstalt für das Forstliche Versuchswesen, Mitteilungen 48: 587–930

    Google Scholar 

  • Ellert BH & Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canad. J. Soil Sci. 75: 529–538

    Article  Google Scholar 

  • Finney DJ (1941) On the distribution of a variable whose logarithm is normally distributed. J. Royal Statist. Soc. B 7: 155–161

    Google Scholar 

  • Frei E, Vökt U, Flückiger R, Brunner H & Schai F (1980) Bodeneignungskarte der Schweiz. Eidg. Justiz-und Polizeidepartement – Bundesamt für Raumplanung, Bern GACGC (1998) The accounting of biological sinks and sources under the Kyoto Protocol: A step forwards or backwards for global environmental protection. Special Report 1998. http://www.awibremerhaven.de/WBGU/wbgu_sn1998_engl.html. German Advisory Council of Global Change, Bremerhaven (Germany)

    Google Scholar 

  • Gärdenäs AI (1998) Soil organic matter in European forest floors in relation to stand characteristics and environmental factors. Scand. J. Forest Res. 13: 274–283

    Article  Google Scholar 

  • Ghosh S (1996) A new graphical tool to detect non-normality. J. Royal Statist. Soc. B 58: 691–702

    Google Scholar 

  • Grigal DF & Ohmann LF (1992) Carbon storage in upland forests of the Lake States. Soil Sci. Soc. Am. J. 56: 935–943

    Article  Google Scholar 

  • Grigal DF, Brovold SL, Nord WS & Ohmann LF (1989) Bulk density of surface soils and peat in the north central United States. Canad. J. Soil Sci. 69: 895–900

    Article  Google Scholar 

  • Haber J (1985) Beziehungen zwischen dem Humusgehalt/Humusvorrat bayerischer Bergwaldböden und steuernden Standorts-und Bestandesfaktoren. PhD Thesis, University of Bayreuth

  • Hanawalt RB & Whittaker RH (1976) Altitudinally coordinated patterns of soils and vegetation in the San Jacinto Mountains, California. Soil Sci. 121: 114–124

    Article  Google Scholar 

  • Harrison AF & Bocock KL (1981) Estimation of soil bulk density from loss-on-ignition. J. Appl. Ecol. 8: 919–927

    Article  Google Scholar 

  • Harrison KG, Post WM & Richter DD (1995) Soil carbon turnover in a recovering temperate forest. Global Biogeochem. Cycles 9: 449–454

    Article  Google Scholar 

  • Harrison K, Broecker W & Bonani G (1993) A strategy for estimating the impact of CO2 fertilization on soil carbon storage. Global Biogeochemical Cycles 7: 69–80

    Article  Google Scholar 

  • Homann PS, Sollins P, Chappell HN & Stangenberger AG (1995) Soil organic carbon in a mountainous forested region: Relation to site characteristics. Soil Sci. Soc. Am. J. 59: 1468–1475

    Article  Google Scholar 

  • Homann PS, Sollins P, Fiorella M, Thorson T & Kern JS (1998) Regional soil organic carbon storage estimates for western Oregon by multiple approaches. Soil Sci. Soc. Am. J. 62: 789–796

    Article  Google Scholar 

  • Houghton JT, Meiro Filho LG, Kim B, Treanton K, Mamaty I, Bonduki Y, Griggs DJ & Callander BA (1997) IPCC – Greenhouse Gas Inventory. Reporting Instructions (Vol. 1). IPCC/OECD/IEA, Bracknell, UK

  • Howard PJA, Loveland PJ, Bradley RI, Dry FT, Howard DM & Howard DC (1995) The carbon content of soil and its geographical distribution in Great Britain. Soil Use and Management 11: 9–15

    Article  Google Scholar 

  • Huntington TG, Johnson CE, Johnson AH, Siccama TG & Ryan DF (1989) Carbon, organic matter, and bulk density relationships in a forested spododsol. Soil Sci. 148: 380–386

    Article  Google Scholar 

  • Huntington TG, Ryan DF & Hamburg SP (1988) Estimating soil nitrogen and carbon pools in a northern hardwood forest ecosystem. Soil Sci. Soc. Am. J. 52: 1162–1167

    Article  Google Scholar 

  • Kaluzny SP, Vega SD, Cardoso TP & Shelly AA (1996) S+SPATIALSTATS User's Manual: Version 1.0. MathSoft Inc., Seattle, Washington

    Google Scholar 

  • Kaufmann E & Brassel P (1999) Holzvorrat, Zuwachs und Nutzung. In: Brassel P & Brändli UB (Eds) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995 (pp 73–100). Verlag Paul Haupt, Bern

    Google Scholar 

  • Kauppi PE, Posch M, Hänninen P, Henttonen HM, Ihalainen A, Lappalainen E, Starr M & Tamminen P (1997) Carbon reservoirs in peatlands and forests in the boreal regions of Finland. Silva Fennica 31: 13–25

    Article  Google Scholar 

  • Kienast F (1998) Bioklimatische Datenbank WSL. For more information see Internet site http://www.wsl.ch/land/evolution/bioclim.html

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27: 753–760

    Article  Google Scholar 

  • Körner C, Schilcher B & Pelaez-Riedl S (1993) Vegetation und Treibhausproblematik: Eine Beurteilung der Situation in Österreich unter besonderer Berücksichtigung der Kohlenstoffbilanz. Bestandesaufnahme Anthropogene Klimaänderungen: Mögliche Auswirkungen auf Österreich – Mögliche Massnahmen in Österreich. Verlag der Österreichischen Akademie der Wissenschaften, Wien

  • Kurz WA, Apps MJ, Beukema SJ & Lekstrum T (1995) 20th century carbon budget of Canadian forests. Tellus 47B: 170–177

    Article  Google Scholar 

  • Liski J & Westman CJ (1996) Carbon storage in forest soil of Finland. 2. Size and regional patterns. Biogeochemistry 36: 261–274

    Article  Google Scholar 

  • Liski J, Ilvesniemi H, Mäkelä A & Starr M (1998) Model analysis of the effects of soil age, fires and harvesting on the carbon storage of boreal forest soils. Europ. J. Soil Sci. 49: 407–416

    Article  Google Scholar 

  • Lüscher P, Rigling A, Walthert L & Zimmermann S (1994) Waldzustandsinventur 1993 – Bodenkundliche Erhebungen. Bodenkundliche Gesellschaft der Schweiz 18: 69–76

    Google Scholar 

  • Martin PH, Valentini R, Jacques M, Fabbri K, Galati D, Quaratino R, Moncrieff JB, Jarvis P, Jensen NO, Lindroth A, Grelle A, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Keronen P, Matteucci G, Grainer A, Berbingier P, Loustau A, Grelle A, Schulze ED, Tenhunen J, Rebman C, Dolman AJ, Elbers JE, Bernhofer C, Grünwald T, Thorgeirsson H, Kennedy P & Folving S (1998) New estimate of the carbon sink strength of EU forests integrating flux measurements, field surveys, and space observations: 0.17–0.35 Gt (C). Ambio 27: 582–584

    Google Scholar 

  • Matthews E (1997) Global litter production, pools, and turnover times: Estimates from measurement data and regression models. J. Geophys. Res. 102: 18771–18800

    Article  Google Scholar 

  • McGuire AD, Melillo JM, Kicklighter DW & and Joyce LA (1995) Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeog. 22: 785–796

    Article  Google Scholar 

  • McNabb DH, Cromack Jr J & Fredriksen RL (1986) Variability of nitrogen and carbon in surface soils of six forest types in the Oregon Cascades. Soil Sci. Soc. Am. J. 50: 1037–1041

    Article  Google Scholar 

  • Melillo JM, Kicklighter DW, McGuire AD, Peterjohn WT & Newkirk KM (1995) Global change and its effects on soil organic carbon stocks. In: Zepp RG & Sonntag Ch (Eds) The Role of Nonliving Organic Matter in the Earth's Carbon Cycle (pp 175–189). John Wiley & Sons, Ltd., Chichester

    Google Scholar 

  • Milne R & Brown TA (1997) Carbon in the vegetation and soils of Great Britain. J. Environ. Manag. 49: 413–433

    Article  Google Scholar 

  • Moore TR, Trofymov JA, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltainen M, Smith S, Titus B, Visser S, Wein R & Zoltai S (1999) Litter decomposition rates in Canadian forests. Global Change Biol. 5: 75–82

    Article  Google Scholar 

  • Murillo JCR (1994) The carbon budget of the Spanish forests. Biogeochemistry 25: 197–217

    Article  Google Scholar 

  • Nabuurs GJ & Mohren GMJ (1993) Carbon in Dutch forest ecosystems. Netherlands J. Agricult. Sci. 41: 309–326

    Google Scholar 

  • Oades JM (1995) An overview of processes affecting the cycling of organic carbon in soils. In: Zepp RG & Sonntag Ch (Eds) The Role of Nonliving Organic Matter in the Earth's Carbon Cycle (pp 293–303). John Wiley & Sons, Ltd., Chichester

    Google Scholar 

  • Parfitt RL, Theng BKG, Whitton JS & Shepherd TG (1996) Effects of clay minerals and land use on organic matter pools. Geoderma 75: 1–12

    Article  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Garcia Moya E and Kamnalrut A & Kyniamario JI (1993) Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cycles 7: 785–809

    Article  Google Scholar 

  • Paulsen J (1995) Der Biologische Kohlenstoffvorrat der Schweiz. Rüegger Verlag, Chur

  • Pennock DJ & Van Kessel C (1995) Clear-cut forest harvest impacts on soil quality indicators in the mixedwood forest of Saskatchewan, Canada. Geoderma 75: 13–32

    Article  Google Scholar 

  • Perruchoud DO, Joos F, Fischlin A, Hajdas I & Bonani G (1999a) Evaluating time scales of carbon turnover in temperate forest soils with soil radiocarbon data. Global Biogeochem. Cycles 13: 555–573

    Article  Google Scholar 

  • Perruchoud DO, Kienast F, Kaufmann E & Bräker OU (1999b) 20th century carbon budget of forest soils in the alps. Ecosystems 2: 320–337

    Article  Google Scholar 

  • Post WM, King AW & Wullschleger SD (1997) Historical variations in terrestrial biospheric carbon storage. Global Biogeochem. Cycles 11: 99–109

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ & Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298: 156–159

    Article  Google Scholar 

  • Rahman S, Munn LC, Zhang R & Vance GF (1996) Rocky Mountain forest soils: evaluating spatial variability using conventional statistics and geostatistics. Canad. J. Soil Sci. 76: 501–507

    Article  Google Scholar 

  • Raich JW & Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem. Cycles 9: 23–36

    Article  Google Scholar 

  • Rapalee G, Trumbore SE, Davidson EA, Harden JW & Veldhuis H (1999) Soil carbon stocks and their rates of accumulation and loss in an boreal forest landscape. Global Biogeochem. Cycles 12: 687–701

    Article  Google Scholar 

  • S-Plus (1996) S-Plus User's Manual: Volume 2 UNIX. MathSoft Inc., Seattle, Washington

    Google Scholar 

  • SAEFL (1997) Criteria and indicators for sustainable forest management in Switzerland. Technical report. Swiss Agency for the Environment, Forests and Landscape (SAEFL). Berne (Switzerland)

  • SAS (1990) SAS/STAT User's Guide: Vol. 2. SAS Institute, Cary, North Carolina

    Google Scholar 

  • Schimel D, Enting IG, Heimann M, Wigley TML, Raynaud D, Alves D & Siegenthaler U (1995) CO2 and the carbon cycle. In: Houghton JT, Meira Filho LG, Bruce J, Hoesung L, Callander BA, Haites E, Harris N & Maskell K (Eds) Climate Change 1994 – Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenario (pp 39–71). Cambridge University Press, Cambridge

    Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKweon R, Ojima DS, Painter TH, Parton WJ & Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem. Cycles 8: 279–293

    Article  Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348: 232–234

    Article  Google Scholar 

  • Siltanen RM, Apps MJ, Zoltai SC, Mair RM & Strong WL (1997) A soil profile and organic carbon data base for Canadian forest and tundra mineral soils. Technical Report. Canad. Forest Service, Northern Forestry Service. Edmonton, Alberta

  • Smith P, Powlson DS, Glendining MJ & Smith JU (1997) Potential for carbon sequestration in European soil: Preliminary estimates for five scenarios using results from long-term experiments. Global Change Biol. 3: 67–79

    Article  Google Scholar 

  • Stierlin HR & Ulmer U (1999) Waldaufbau. In: Brassel P & Brändli UB (Eds) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995 (pp 103–150). Verlag Paul Haupt, Bern

    Google Scholar 

  • Strobel T, KellerM, Paschedag I & Schnellbächer HJ (1999) Waldfläche undWaldeigentümer. In: Brassel P & Brändli UB (Eds) Schweizerisches Landesforstinventar: Ergebnisse der Zweitaufnahme 1993–1995 (pp 39–52).Verlag Paul Haupt, Bern

    Google Scholar 

  • Tate KR, Parshotam A & Ross DJ (1995) Soil carbon storage and turnover in temperate forests and grasslands – A New Zealand perspective. J. Biogeography 22: 695–700

    Article  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM & Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389: 170–173

    Article  Google Scholar 

  • Townsend AR, Vitousek PM & Trumbore SE (1995) Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76: 721–733

    Article  Google Scholar 

  • Trumbore SE, Chadwick OA & Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272: 393–396

    Article  Google Scholar 

  • UN/ECE (1994) Convention on long-range transboundary air pollution. International cooperative programme on assessments and monitoring of air pollution effects on forests. Manual on methods and criteria for harmonized sampling, assessment, monitoring, and analysis of the effects of air pollution on forests. Technical Report. UN/ECE Programme Coordinating Centres. Programme Coordinating Centres, Hamburg and Prague

  • Vanmechelen L, Groenemans R & Van Ranst E (1997) Forest soil condition in Europe. Results of a large-scale soil survey. Technical Report. EC, UN/ECE and the Ministry of the Flemish Community, Brussels

  • Vogt K (1991) Carbon budgets of temperate forest ecosystems. Tree Physiol. 9: 69–81

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Brown S, Tilley JP, Edmonds RL, Silver WL & Siccama TG (1995) Dynamics of forest floor and soil organic matter accumulation in boreal, temperate, and tropical forests. In: Lal R, Kimble J, Levine E & Stewart BA (Eds) Soil Management and Greenhouse Effect (pp 159–178). CRC Lewis Publishers, Boca Raton

    Google Scholar 

  • Wofsy SC, Goulden ML, Munger JW, Fan SM, Bawkin PS, Daube BC, Bassow SL & Bazzaz FA (1993) Net exchange of CO2 in a mid-latitude forest. Science 260: 1314–1317

    Article  Google Scholar 

  • Zinke PJ, Stangenberger AG, Post WM, Emanuel WR & Olson JS (1986) Worldwide Organic Soil Carbon and Nitrogen Data. NDP-018. Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perruchoud, D., Walthert, L., Zimmermann, S. et al. Contemporary carbon stocks of mineral forest soils in the Swiss Alps. Biogeochemistry 50, 111–136 (2000). https://doi.org/10.1023/A:1006320129112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006320129112

Navigation