Skip to main content
Log in

Glucose modulates the abscisic acid-inducible Rab16A gene in cereal embryos

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Glucose effects on the expression of the abscisic acid-inducible Rab16A gene were examined in rice and barley embryos. Glucose feeding to rice embryos negatively affects the endogenous abscisic acid content and represses the promoter activity of the Rab16A gene. Glucose repression of the Rab16A gene takes place both at a transcriptional and a post-transcriptional level. Modulation of the abscisic acid content in rice embryos triggered by glucose did not directly influence the expression of the rice α-amylase gene RAmy3D, which is known to be under glucose control. The possible interaction between the glucose and abscisic acid signaling pathway is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, S., Harada, J. and Goldberg, R. 1988. Cellular localization of soybean storage protein mRNA in transformed tobacco seed. Proc. Natl. Acad. Sci. USA 85: 458–462.

    Google Scholar 

  • Bray, E.A. 1993. Molecular responses to water deficit. Plant Physiol. 103: 1035–1040.

    Google Scholar 

  • Busk, P.K. and Pagè s, M. 1998. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37: 425–435.

    Google Scholar 

  • Bustos, M.M., Iyer, M. and Gagliardi, S.J. 1998. Induction of a β-phaseolin promoter by exogenous abscisic acid in tobacco: developmental regulation and modulation by external sucrose and Ca2+ ions. Plant Mol. Biol. 37: 265–274.

    Google Scholar 

  • Chen, M.-T. and Yu, S.-M. 1998. The 30 untranslated region of rice α-amylase gene functions as a sugar-dependent mRNA stability determinant. Proc. Natl. Acad. Sci. USA 95: 6543–6547.

    Google Scholar 

  • DeWald, D.B., Sadka, A. and Mullet, J.E. 1994. Sucrose modulation of soybean Vsp gene expression is inhibited by auxin. Plant Physiol. 104: 439–444.

    Google Scholar 

  • Dure, L., III, Crouch, M., Harada, J., Ho, T.-H.D., Mundy, J., Quatrano, R., Thomas, T. and Sung, Z.R. 1989. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12: 475–486.

    Google Scholar 

  • Guglielminetti, L., Perata, P. and Alpi, A. 1995. Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiol. 108: 735–741.

    Google Scholar 

  • Guiltinan, M.J., Marcotte, J., William, R. and Quatrano, R.S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–270.

    Google Scholar 

  • Hattori, T. and Hobo, T. 1999. Regulation of gene expression by abscisic acid in rice. In: K. Shimamoto (Ed.), Molecular Biology of Rice, Springer-Verlag, Tokyo, pp. 139–160.

    Google Scholar 

  • Huang, N., Koizumi, N., Reinl, S. and Rodriguez, R.L. 1990. Structural organization and differential expression of rice α-amylase genes. Nucl. Acids Res. 18: 7007–7014.

    Google Scholar 

  • Hwang, Y.-S., Karrer, E.E., Thomas, B.R., Chen, L. and Rodriguez, R.L. 1998. Three cis-elements required for rice α-amylase Amy3D expression during sugar starvation. Plant. Mol. Biol. 36: 331–341.

    Google Scholar 

  • Ingram, J. and Bartels, D. 1996. Molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377–403.

    Google Scholar 

  • Izawa, T., Foster, R. and Chua, N.-H. 1993. Plant bZIP protein DNA binding specificity. J. Mol. Biol. 230: 1131–1144.

    Google Scholar 

  • Jang, J.C., Leon, P., Zhou, L. and Sheen, J. 1997. Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19.

    Google Scholar 

  • Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C. and Pagè s, M. 1998. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J. 13: 691–697.

    Google Scholar 

  • Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509–540.

    Google Scholar 

  • Lanahan, M.B., Ho, T.-H.D., Rogers, S.W. and Rogers, J.C. 1992. A gibberellin response complex in cereal α-amylase gene promoters. Plant Cell 4: 203–211.

    Google Scholar 

  • Lu, C.-A., Lim, E.-K. and Yu, S.-M. 1998. Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J. Biol. Chem. 273: 10120–10131.

    Google Scholar 

  • Mitsuhara, I., Ugaki, M., Hirochika, H., Ohshima, M., Murakami, T., Gotoh, Y., Katayose, Y., Nakamura, S., Honkura, R., Nishimiya, S., Ueno, K., Mochizuki, A., Tanimoto, Y., Tsugawa, H., Otsuki, Y. and Ohashi, Y. 1996. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37: 49-59.

    Google Scholar 

  • Mitsunaga, S., Rodriguez, R.L. and Yamaguchi, J. 1994. Sequencespecific interactions of a nuclear protein factor with the promoter region of a rice gene for α-amylase, RAmy3D. Nucl. Acids Res. 22: 1948–1953.

    Google Scholar 

  • Morita, A., Umemura, T., Kuroyanagi, M., Futsuhara, Y., Perata, P. and Yamaguchi, J. 1998. Functional dissection of a sugarrepressed α-amylase gene (RAmy1A) promoter in rice embryos. FEBS Lett. 423: 81–85.

    Google Scholar 

  • Mundy, J. and Chua, N.-H. 1988. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7: 2279–2286.

    Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Nakagawa, H., Ohmiya, K. and Hattori, T. 1996. A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J. 9: 217–227.

    Google Scholar 

  • Neill, S.J., Horgan, R. and Rees, A.F. 1987. Seed development and vivipary in Zea mays L. Planta 171: 358–364.

    Google Scholar 

  • Oeda, K., Salinas, J. and Chua, N.-H. 1991. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J. 10: 1793–1802.

    Google Scholar 

  • Ohto, M., Nakamura-Kito, K. and Nakamura, K. 1992. Induction of expression of genes coding for sporamin and β-amylase by polygalacturonic acid in leaf-petiole cuttings of sweet potato. Plant Physiol. 99: 422–427.

    Google Scholar 

  • Ono, A., Izawa, T., Chua, N.-H. and Shimamoto, K. 1996. The rab16B promoter of rice contains two distinct abscisic acidresponsive elements. Plant Physiol. 112: 483–491.

    Google Scholar 

  • Perata, P., Matsukura, C., Vernieri, P. and Yamaguchi, J. 1997. Sugar repression of gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9: 2197–2208.

    Google Scholar 

  • Radley, M. 1967. Site of production of gibberellin-like substances in germinating barley embryos. Planta 75: 164–171.

    Google Scholar 

  • Rook, F., Gerrits, N., Kortstee, A, van Kampen, M., Borrias, M., Weisbeek, P. and Smeekens, S. 1998. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J. 15: 253–263.

    Google Scholar 

  • Shen, Q. and Ho, T.-H.D. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABAresponsive complexes each containing a G-Box and a novel cis-acting element. Plant Cell 7: 295–307.

    Google Scholar 

  • Shen, Q, Zhang, P. and Ho, T.-H.D. 1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8: 1107–1119.

    Google Scholar 

  • Skadsen, R.W. 1993. Aleurones from a barley with low α-amylase activity become highly responsive to gibberellic acid when detached from the starchy endosperm. Plant Physiol. 102: 195–203.

    Google Scholar 

  • Skriver, K. and Mundy, J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512.

    Google Scholar 

  • Skriver, K., Olsen, F.L., Rogers, J.C. and Mundy, J. 1991. Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc. Natl. Acad. Sci. USA 88: 7266–7270.

    Google Scholar 

  • Smeekens, S. 1998. Sugar regulation of gene expression in plants. Curr. Opin. Plant Biol. 1: 230–234.

    Google Scholar 

  • Tanaka, A., Mita, S., Ohta, S., Kyozuka, J., Shimamoto, K. and Nakamura, K. 1990. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucl. Acids Res. 18: 6767-6770.

    Google Scholar 

  • Toyofuku, K., Umemura, T. and Yamaguchi, J. 1998. Promoter elements required for sugar-repression of the RAmy3D gene for α-amylase in rice. FEBS Lett. 428: 275–280.

    Google Scholar 

  • Umemura, T., Perata, P., Futsuhara, Y. and Yamaguchi, J. 1998. Sugar sensing and α-amylase gene repression in rice embryos. Planta 204: 420–428.

    Google Scholar 

  • Vernieri, P., Perata, P., Armellini, D., Bugnoli, M., Presentini, R., Lorenzi, R., Ceccarelli, N., Alpi, A. and Tognoni, F. 1989. Solid phase radioimmunoassay for the quantitation of abscisic acid in 460 plant crude extracts using a new monoclonal antibody. J. Plant Physiol. 134: 441–446.

    Google Scholar 

  • Walker-Simmons, M., Reaney, M. Quarrie, S., Perata, P., Vernieri, P. and Abrams, S. 1990. Monoclonal antibody recognition of abscisic acid analogs. Plant Physiol. 95: 46–51.

    Google Scholar 

  • Williams, M.E., Foster, R. and Chua, N.-H. 1992. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4: 485–496.

    Google Scholar 

  • Wingler, A., von Schaewen, A., Leegood, R.C., Lea, P.J. and Quick, P. 1998. Regulation of leaf senescence by cytokinin, sugar, and light. Plant Physiol 116: 329–335.

    Google Scholar 

  • Yamaguchi, J. 1998. Analysis of embryo-specific α-amylase using isolated mature rice embryos. Breed Sci. 48: 365–370.

    Google Scholar 

  • Yamaguchi-Shinozaki, K., Mundy, J. and Chua, N.-H. 1989. Four tightly linked rab genes are differentially expressed in rice. Plant Mol. Biol. 14: 29–39.

    Google Scholar 

  • Zeevaart, J.A.D. and Creelman, R.A. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. PlantMol. Biol. 39: 439–473.

    Google Scholar 

  • Zhou, L., Jang, J.-C., Jones, T.L. and Sheen, J. 1998. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc. Natl. Acad. Sci. USA 95: 10294–10299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyofuku, K., Loreti, E., Vernieri, P. et al. Glucose modulates the abscisic acid-inducible Rab16A gene in cereal embryos. Plant Mol Biol 42, 451–460 (2000). https://doi.org/10.1023/A:1006318117107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006318117107

Navigation