Skip to main content
Log in

Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A critical review of studies on import of Lhcb (apoproteins of LHC II) by chloroplasts uncovered a mechanism for initiation of assembly of light-harvesting complexes. Manipulation of in vivo systems and mutagenesis of specific residues in the protein showed that accumulation of physiological amounts of Lhcb by the plastid requires interaction of the protein with Chl within the inner membrane of the chloroplast envelope. ‘Retention motifs’, commonly -EXXHXR- in the first membrane-spanning region (helix-1) and -EXXNXR- in the third membrane-spanning region (helix-3), occur in the primary sequence of the protein. Mutations in these sequences prevent accumulation of Lhcb by isolated chloroplasts. We propose that the His or Asn sidechain and a transient intrahelix ion-pair with the Glu and Arg residues provide ligands for two molecules of Chl in each motif, which serve as a sensing mechanism for the availability of Chl. Interaction of two Chl molecules with both motifs is required for stable insertion of the protein into the membrane. Chl(ide) is possibly quenched by interaction with xanthophylls immediately after synthesis, and Chl-lutein pairs may initiate folding of Lhcb. Lhcb that does not immediately interact with sufficient Chl molecules is not retained by the organelle and, in vivo, is retracted into the cytosol or shunted to vacuoles for degradation rather than imported into the plastid stroma. The ubiquitous existence of retention motifs from small Lhcb-like polypeptides in cyanobacteria to all nuclear-encoded Chl-binding proteins (the Lhcb and Lhca families and related proteins) testify to the importance of these sequences in assembly of Chl-protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamska I (1997) ELIPS – light-induced stress proteins. Physiol Plant 100: 794–805

    Google Scholar 

  • Adamska I, Kloppstech K and Ohad I (1993) Early light-inducible protein in pea is stable during light stress but is degraded during recovery at low light intensity. J Biol Chem 268: 5438–5444

    PubMed  Google Scholar 

  • Akoyunoglou G and Argyroudi-Akoyunoglou JH (1978) Control of thylakoid growth in Phaseolus vulgaris. Plant Physiol 61: 834–837

    Google Scholar 

  • Allen KD and Staehelin LA (1994) Polypeptide composition, assembly and phosphorylation patterns of the Photosystem II antenna system of Chlamydomonas reinhardtii. Planta 194: 42–54

    Google Scholar 

  • Anastassiou R and Argyroudi-Akoyunoglou JH (1995) Thylakoid-bound proteolytic activity against LHC II apoprotein in bean. Photosynth Res 43: 241–250

    Google Scholar 

  • Auchincloss AH, Alexander A and Kohorn BD (1992) Requirement for three membrane-spanning α-helices in the post-translational insertion of a thylakoid membrane protein. J Biol Chem 267: 10439–10446

    PubMed  Google Scholar 

  • Baillet B and Korhorn BD (1996) Hydrophobic core but not amino-terminal charged residues are required for translocation of an integral thylakoid membrane protein in vivo. J Biol Chem 271: 18375–18378

    PubMed  Google Scholar 

  • Barber J, Nield J, Morris EP and Hankamer B (1999) Subunit positioning in Photosystem II revisited. Trends Biochem Sci 24: 43–45

    PubMed  Google Scholar 

  • Bassi R and Wollman F-A (1991) The chlorophyll-a/b proteins of Photosystem II in Chlamydomonas reinhardtii. Planta 183: 423–433

    Google Scholar 

  • Bassi R, Sandonà D and Croce R (1997) Novel aspects of chlorophyll a/b-binding proteins. Physiol Plant 100: 769–779

    Google Scholar 

  • Bellemare G, Bartlett SG and Chua N-H (1982) Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem 257: 7762–7767

    PubMed  Google Scholar 

  • Belyaeva O and Sundqvist C (1998) Comparative investigation of the appearance of primary chlorophyllide forms in etiolated leaves, prolamellar bodies and prothylakoids. Photosynth Res 55: 41–48

    Google Scholar 

  • Bennett J (1981) Biosynthesis of the light-harvesting chlorophyll a/b protein. Peptide turnover in darkness. Eur J Biochem 118: 61–70

    PubMed  Google Scholar 

  • Bonk M, Hoffmann B, Von Lintig J, Schledz M, Al-Babili S, Hobeika E, Kleinig H and Beyer P (1997) Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. Eur J Biochem 247: 942–950

    PubMed  Google Scholar 

  • Booth PJ and Paulsen H (1996) Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements. Biochemistry 35: 5103–5108

    PubMed  Google Scholar 

  • Cammarata KV and Schmidt GW (1992) In vitro reconstitution of a light-harvesting gene product: deletion mutagenesis and analysis of pigment binding. Biochemistry 31: 2779–2789

    PubMed  Google Scholar 

  • Chitnis PR, Harel E, Kohorn BD, Tobin EM and Thornber JP (1986) Assembly of the precursor and processed light-harvesting chlorophyll a/b protein of Lemna into the light-harvesting complex II of barley etioplasts. J Cell Biol 102: 982–988

    PubMed  Google Scholar 

  • Christopher DA and Mullet JE (1994) Separate photosensory pathways co-regulate blue light/ultraviolet-A-activated psbD–psbC transcription and light-induced D2 and CP43 degradation in barley (Hordeum vulgare) chloroplasts. Plant Physiol 104: 1119–1129

    PubMed  Google Scholar 

  • Chunaev AS, Mirnaya ON, Maslov VG and Boschetti A (1991) Chlorophyll b-and loroxanthin-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 25: 291–301

    Google Scholar 

  • Cline K (1986) Import of proteins into chloroplasts: membrane integration of a thylakoid precursor protein reconstituted in chloroplast lysates. J Biol Chem 261: 14804–14810

    PubMed  Google Scholar 

  • Cline K (1988) Light-harvesting chlorophyll a/b protein. Membrane insertion, proteolytic processing, assembly into LHC II, and localization to appressed membranes occurs in chloroplast lysates. Plant Physiol 86: 1120–1126

    Google Scholar 

  • Cline K and Henry R (1996) Import and routing of nucleus-encoded chloroplast proteins. Annu Rev Cell Devel Biol 12: 1–26

    Google Scholar 

  • Cline K, Henry R, Li C and Yuan J (1993) Multiple pathways for protein transport into or across the thylakoid membrane. EMBO J 12: 4105–4114

    PubMed  Google Scholar 

  • Cline K, Fulsom, DR and Viitanen PV (1989) An imported thylakoid protein accumulates in the stroma when insertion into thylakoids is inhibited. J Biol Chem 264: 14225–14232

    PubMed  Google Scholar 

  • Connelly JP, Müller MG, Bassi R, Croce R and Holzwarth AR (1997) Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of Photosystem II. Biochemistry 36: 281–288

    PubMed  Google Scholar 

  • Cuming AC and Bennett J (1981) Biosynthesis of the light-harvsting chlorophyll a/b protein. Control of messenger RNA activity by light. Eur J Biochem 118: 71–80

    PubMed  Google Scholar 

  • Dahlin C and Cline K (1991) Developmental regulation of the plastid protein import apparatus. Plant Cell 3: 1131–1140

    PubMed  Google Scholar 

  • Dreyfuss BW and Thornber JP (1994) Assembly of the lightharvesting complexes (LHCs) of Photosystem II. Plant Physiol 106: 829–839

    PubMed  Google Scholar 

  • Eggink LL, Park H and Hoober JK (1999) The role of the envelope in assembly of light-harvesting complexes in the chloroplast: distribution of LHCP between chloroplast and vacuoles during chloroplast development in Chlamydomonas reinhardtii. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 161–166. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Eichenberger W, Boschetti A and Michel HP (1986) Lipid and pigment composition of a chlorophyll b-deficient mutant of Chlamydomonas reinhardtii. Physiol Plant 66: 589–594

    Google Scholar 

  • Eullaffroy P, Popovic R and Frank F (1998) Changes of chlorophyll(ide) fluorescence yield induced by a short light pulse as a probe to monitor the early steps of etioplast phototransformation in dark-grown leaves. Photochem Photobiol 67: 676–682

    Google Scholar 

  • Falbel TG, Meehl JB and Staehelin LA (1996) Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol 112: 821–832

    PubMed  Google Scholar 

  • Flachmann R and Kühlbrandt W (1996) Crystallization and identification of an assembly defect of recombinant antenna complexes produced in transgenic tobacco plants. Proc Natl Acad Sci USA 93: 14966–14971

    PubMed  Google Scholar 

  • Ford C and Wang W-Y. (1980) Three new yellow loci in Chlamydomonas reinhardtii. Mol Gen Genet 179: 259–263

    PubMed  Google Scholar 

  • Frank HA and Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63: 257–264

    PubMed  Google Scholar 

  • Franklin AE and Hoffman NE (1993) Characterization of a chloroplast homologue of the 54-kDa subunit of the signal recognition particle. J Biol Chem 268: 22175–22180

    PubMed  Google Scholar 

  • Friedman AL and Keegstra K (1989) Chloroplast protein import. Quantitative analysis of precursor binding. Plant Physiol 89: 993–999

    Google Scholar 

  • Frydman J, Nimmesgern E, Ohtsuka K and Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370: 111–117

    PubMed  Google Scholar 

  • Funk C, Adamska I, Green BR, Andersson B and Renger G (1995) The nuclear-encoded chlorophyll-binding Photosystem II-S protein is stable in the absence of pigments. J Biol Chem 270: 30141–30147

    PubMed  Google Scholar 

  • Funk C, Lindström V and Vermaas W (1999) Small Cab-like proteins: relatives to the chlorophyll a/b binding proteins in cyanobacteria. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 103–106. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Guiffra E, Cugini D, Croce R and Bassi R (1996) Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem 238: 112–120

    PubMed  Google Scholar 

  • Giuffra E, Zucchelli G, Sandonà D, Croce R, Cugini D, Garlaschi FM, Bassi R and Jennings RC (1997) Analysis of some optical properties of a native and reconstituted Photosystem II antenna complex, CP29: Pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Biochemistry 36: 12984–12993

    PubMed  Google Scholar 

  • Gradinaru CC, Özdemir S, Gülen D, Van Stokkum IHM, Van Grondelle R and van Amerongen H (1998) The flow of excitation energy in LHC II monomers: Implications for the structural model of the major plant antenna. Biophys J 75: 3064–3077

    PubMed  Google Scholar 

  • Green BR and Kühlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHC II. Photosynth Res 44: 139–148

    Google Scholar 

  • Green BR and Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39: 149–162

    Google Scholar 

  • Grimm B, Kruse E and Kloppstech K (1989) Transiently expressed early light-inducible proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol 13: 583–593

    PubMed  Google Scholar 

  • Hahn D and Kück U (1999) Identification of DNA sequences controlling light-and chloroplast-dependent expression of the lhcb1 gene from Chlamydomonas reinhardtii. Curr Genet 34: 459–466

    PubMed  Google Scholar 

  • Heinze I, Pfündel E, Hühn M and Dau H (1997) Assembly of light harvesting complexes II (LHC II) in the absence of lutein. A study on the α-carotenoid-free mutant C-2′-34 of the green alga Scenedesmus obliquus. Biochim Biophys Acta 1320: 188–194

    Google Scholar 

  • Hemelrijk PW, Kwa SLS, Van Grondelle R and Dekker JP (1992) Spectroscopic properties of LHC II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. Biochim Biophys Acta 1098: 159–166

    Google Scholar 

  • Hermsmeier D, Schulz R and Senger H (1994) Formation of light-harvesting complexes of Photosystem II in Scenedesmus. 1.Correlation between amounts of photosynthetic pigments, Lhc messenger RNAs and LHC apoproteins during constitutional dark and light-dependent Lhc-gene expression. Planta 193: 398–405

    Google Scholar 

  • High S, Henry R, Mould RM, Valent Q, Meacock S, Cline K, Gray JC and Luirink J (1997) Chloroplast SRP54 interacts with a specific subset of thylakoid precursor proteins. J Biol Chem 272: 11622–11628

    PubMed  Google Scholar 

  • Hiller RG, Broughton MJ, Wrench PM, Sharples FP, Miller DJ and Catmull J (1999) Dinoflagellate light-harvesting proteins: genes, structure and reconstitution. In: Argyroudi-Akoyunoglou JH and Senger H (eds) The Chloroplast: From Molecular Biology to Biotechnology, pp 3–10. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Hobe S, Förster R, Klingler J and Paulsen H (1995) N-Proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34: 10224–10228

    PubMed  Google Scholar 

  • Hoffman NE and Franklin AE (1994) Evidence for a stromal GTP requirement for the integration of a chlorophyll a/b-binding polypeptide into thylakoid membranes. Plant Physiol 105: 295–304

    PubMed  Google Scholar 

  • Hoober JK and Hughes MJ (1992) Purification and characterization of a membrane-bound protease from Chlamydomonas reinhardtii. Plant Physiol 99: 932–937

    Google Scholar 

  • Hoober JK, Boyd CO and Paavola LG (1991) Origin of thylakoid membranes in Chlamydomonas reinhardtii y-1 at 38 °C. Plant Physiol 96: 1321–1328

    Google Scholar 

  • Hoober JK, Marks DB, Keller BJ and Margulies MM (1982) Regulation of accumulation of the major thylakoid polypeptides in Chlamydomonas reinhardtii y-1 at 25 °C and 38 °C. J Cell Biol 95: 552–558

    PubMed  Google Scholar 

  • Hoober JK, Maloney MA, Asbury LR and Marks DB (1990) Accumulation of chlorophyll a/b-binding polypeptides in Chlamydomonas reinhardtii y-1 in the light or dark at 38 °C. Plant Physiol 92: 419–426

    Google Scholar 

  • Hoober JK, White RA, Marks DB and Gabriel JL (1994) Biogenesis of thylakoid membranes with emphasis on the process in Chlamydomonas. Photosynth Res 39: 15–31

    Google Scholar 

  • Hoober JK, Park H, Wolfe GR, Komine Y and Eggink LL (1998) Assembly of light-harvesting systems. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, pp 363–376. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    PubMed  Google Scholar 

  • Ide JP, Klug DR, Kühlbrandt W, Giorgi LB and Porter G (1987) The state of detergent solubilized light-harvesting chlorophyll a/b protein complex as monitored by picosecond time-resolved fluorescence and circular dichroism. Biochim Biophys Acta 893: 349–364

    Google Scholar 

  • Jakobsson E (1997) Computer simulation studies of biological membranes: progress, promise and pitfalls. Trends Biochem Sci 22: 339–344

    PubMed  Google Scholar 

  • Jansen MAK, Mattoo AK and Edelman M (1999) D1–D2 protein degradation in the chloroplast. Complex light saturation kinetics. Eur J Biochem 260: 527–532

    PubMed  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19

    PubMed  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    PubMed  Google Scholar 

  • Joyard J, Block MA and Douce R (1991) Molecular aspects of plastid envelope biochemistry. Eur J Biochem 199: 489–509

    PubMed  Google Scholar 

  • Joyard J, Maréchal E, Miège C, Block MA, Dorne A-J and Douce R (1998) Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 21–52. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Katz JJ, Dougherty RC and Boucher LJ (1966) Infrared and nuclear magnetic resonance spectroscopy of chlorophyll. In: Vernon LP and Seely GR (eds) The Chlorophylls, pp 185–251. Academic Press, New York

    Google Scholar 

  • Keegstra K and Cline K (1999) Protein import and routing systems in chloroplasts. Plant Cell 11: 557–570

    PubMed  Google Scholar 

  • Kim SJ, Jansson S, Hoffman NE, Robinson C and Mant A (1999) Distinct ‘assisted’ and 'spontaneous’ mechanisms for the insertion of polytopic chlorophyll-binding proteins into the thylakoid membrane. J Biol Chem 274: 4715–4721

    PubMed  Google Scholar 

  • Klimyuk VI, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones JDG, Hoffman NE and Nussaume L (1999) A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11: 87–99

    PubMed  Google Scholar 

  • Kohorn BD (1990) Replacement of histidines of light harvesting chlorophyll a/b binding protein II disrupts chlorophyll–protein complex assembly. Plant Physiol 93: 339–342

    Google Scholar 

  • Kohorn BD and Auchincloss AH (1991) Integration of a chlorophyll-binding protein into Escherichia coli membranes in the absence of chlorophyll. J Biol Chem 266: 12048–12052

    PubMed  Google Scholar 

  • Kohorn BD and Tobin EM (1987) Amino acid charge distribution influences the assembly of apoprotein into light-harvesting complex II. J Biol Chem 262: 12897–12899

    PubMed  Google Scholar 

  • Kohorn BD, Harel E, Chitnis PR, Thornber JP and Tobin EM (1986) Functional and mutational analysis of the light-harvesting chlorophyll a/b protein of thylakoid membranes. J Cell Biol 102: 972–981

    PubMed  Google Scholar 

  • Komine Y, Park H, Wolfe GR and Hoober JK (1996) Secretory granules in the cytoplasm of a wall-less mutant of Chlamydomonas reinhardtii contain processed light-harvesting complex apoproteins and HSP70. J Photochem Photobiol B: Biol 36: 301–306

    Google Scholar 

  • Kouranov A, Chen X, Fuks B and Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143: 991–1002

    PubMed  Google Scholar 

  • Kühlbrandt W and Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350: 130–134

    PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    PubMed  Google Scholar 

  • Kuttkat A, Edhofer I, Eichacker LA and Paulsen H (1997) Light-harvesting chlorophyll a/b-binding protein stably inserts into etioplast membranes supplemented with Zn-pheophytin a/b. J Biol Chem 272: 20451–20455

    PubMed  Google Scholar 

  • Kuttkat A, Grimm R and Paulsen H (1995) Light-harvesting chlorophyll a/b-binding protein inserted into isolated thylakoids binds pigments and is assembled into trimeric light-harvesting complex. Plant Physiol 109: 1267–1276

    PubMed  Google Scholar 

  • Kuttkat A, Hartmann A, Hobe S and Paulsen H (1996) The C-terminal domain of light-harvesting chlorophyll-a/b-binding protein is involved in the stabilization of trimeric light-harvesting complex. Eur J Biochem 242: 288–292

    PubMed  Google Scholar 

  • Li X, Henry R, Yuan J, Cline K and Hoffman NE (1995) A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of aprotein into thylakoid membranes. Proc Natl Acad Sci USA 92: 3789–3793

    PubMed  Google Scholar 

  • Lindahl M, Yang D-H and Andersson B (1995) Regulatory proteolysis of the major light-harvesting chlorophyll a/b protein of Photosystem II by a light-induced membrane-associated enzymic system. Eur J Biochem 231: 503–509

    PubMed  Google Scholar 

  • Maloney MA, Hoober JK and Marks DB (1989) Kinetics of chlorophyll accumulation and formation of chlorophyll–protein complexes during greening of Chlamydomonas reinhardtii y1 at 38 °C. Plant Physiol 91: 1100–1106

    Google Scholar 

  • Maréchal E, Block MA, Dorne A-J, Douce R and Joyard J (1997) Lipid synthesis and metabolism in the plastid envelope. Physiol Plant 100: 65–77

    Google Scholar 

  • Marks DB, Keller BJ and Hoober JK (1985) In vitro processing of precursors of thylakoid membrane proteins of Chlamydomonas reinhardtii y-1. Plant Physiol 79: 108–113

    Google Scholar 

  • Matringe M, Camadro J-M, Block MA, Joyard J, Scalla R, Lsabbe P and Douce R (1992) Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J Biol Chem 267: 4646–4651

    PubMed  Google Scholar 

  • Meyer G and Kloppstech K (1984) A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur J Biochem 138: 201–207

    PubMed  Google Scholar 

  • Michel H, Tellenbach M and Boschetti A (1983) A chlorophyll b-less mutant of Chlamydomonas reinhardtii lacking in the light-harvesting chlorophyll a/b–protein complex but not in its apoproteins. Biochim Biophys Acta 725: 417–424

    Google Scholar 

  • Morré DJ, Penel C, Morré DM, Sandelius AS, Moreau P and Andersson B (1991a) Cell-free transfer and sorting of membrane lipids in spinach. Donor and acceptor specificity. Protoplasma 160: 49–64

    Google Scholar 

  • Morré DJ, Selldén G, Sundqvist C and Sandelius AS (1991b) Stromal low temperature compartment derived from the inner membrane of the chloroplast envelope. Plant Physiol 97: 1558–1564

    Google Scholar 

  • Murray DL and Kohorn BD (1991) Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCP II and have stacked thylakoids. Plant Mol Biol 16: 71–79

    PubMed  Google Scholar 

  • Ohad I, Siekevitz P and Palade GE (1967) Biogenesis of chloroplast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol 35: 553–584

    PubMed  Google Scholar 

  • Ohlrogge J and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970

    PubMed  Google Scholar 

  • Pagano A, Cinque G and Bassi R (1998) In vitro reconstitution of the recombinant Photosystem II light-harvesting complex CP24 and its spectroscopic characterization. J Biol Chem 273: 17154–17165

    PubMed  Google Scholar 

  • Park H, Eggink LL, Roberson RW and Hoober JK (1999) Transfer of proteins from the chloroplast to vacuoles in Chlamydomonas reinhardtii (Chlorophyta): a pathway fordegradation. J Phycol 35: 528–538

    Google Scholar 

  • Park H and Hoober JK (1997) Chlorophyll synthesis modulates retention of apoproteins of light-harvesting complex II by the chloroplast in Chlamydomonas reinhardtii. Physiol Plant 101: 135–142

    Google Scholar 

  • Parks GD and Lamb RA (1993) Role of NH2-terminal positively charged residues in establishing membrane protein topology. J Biol Chem 268: 19101–19109

    PubMed  Google Scholar 

  • Paulsen H (1997) Pigment ligation to proteins of the photosynthetic apparatus in higher plants. Physiol Plant 100: 760–768

    Google Scholar 

  • Paulsen H, Finkenzeller B and Kühlein N (1993) Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 215: 809–816

    PubMed  Google Scholar 

  • Peter GF and Thornber JP (1991) Biochemical composition and organization of higher plant Photosystem II light-harvesting pigment–proteins. J Biol Chem 266: 16745–16754

    PubMed  Google Scholar 

  • Pilgrim MP, Van Wijk K-J, Parry DH, Sy DAC and Hoffman N (1998) Expression of a dominant negative form of cpSRP54 inhibits chloroplast biogenesis in Arabidopsis. Plant J 13: 177–186

    PubMed  Google Scholar 

  • Plumley FG and Schmidt GW (1995) Light-harvesting chlorophyll a/b complexes: interdependent pigment synthesis and protein assembly. Plant Cell 7: 689–704

    PubMed  Google Scholar 

  • Rawyler A, Meylan-Bettex M and Siegenthaler PA (1995) (Galacto)lipid export from envelope to thylakoid membranes in intact chloroplasts. II. A general process with a key role for the envelope in the establishment of lipid asymmetry in thylakoid membranes. Biochim Biophys Acta 1233: 123–133

    PubMed  Google Scholar 

  • Reed JE, Cline K, Stephens LC, Bacot KO and Viitanen PV (1990) Early events in the import/assembly pathway of an integral thylakoid protein. Eur J Biochem 194: 33–42

    PubMed  Google Scholar 

  • Reinero A and Tobin EM (1991) An amino-proximal hydrophobic domain in the major light-harvesting chlorophyll a/b–protein is essential for membrane integration and protein stability. Photosynth Res 30: 25–33

    Google Scholar 

  • Reinbothe C, Lebedev N, Apel K and Reinbothe S (1997) Regulation of chloroplast protein import through a protochlorophyllide-responsive transit peptide. Proc Natl Acad Sci USA 94: 8890–8894

    PubMed  Google Scholar 

  • Renge I and Avarmaa R (1985) Specific solvation of chlorophyll a: solvent nucleophilicity, hydrogen bonding and steric effects on absorption spectra. Photochem Photobiol 42: 253–260

    Google Scholar 

  • Rhee K-H, Morris EP, Barber J and Kühlbrandt W (1998) Three-dimensional structure of the plant Photosystem II reaction center at 8 Å resolution. Nature 396: 283–286

    PubMed  Google Scholar 

  • Richter S and Lamppa GK (1998) A chloroplast processing enzyme functions as the general stromal processing peptidase. Proc Natl Acad Sci USA 95: 7463–7468

    PubMed  Google Scholar 

  • Ruban AV, Phillip D, Young AJ and Horton P (1998) Excited-state energy level does not determine the differential effect of violaxanthin and zeaxanthin on chlorophyll fluorescence quenching in the isolated light-harvesting complex of Photosystem II. Photochem Photobiol 68: 829–834

    Google Scholar 

  • Ryberg M and Sundqvist C (1988) The regular ultrastructure of isolated prolamellar bodies depends on the presence of membrane-bound NADPH-protochlorophyllide oxidoreductase. Physiol Plant 73: 218–226

    Google Scholar 

  • Sager R (1955) Inheritance in the green alga Chlamydomonas reinhardi. Genetics 40: 476–489

    Google Scholar 

  • Sandelius AS and Selstam E (1984) Localization of galactolipid biosynthesis in etioplasts isolated from dark-grown wheat (Triticum aestivum L.). Plant Physiol 76: 1041–1046

    Google Scholar 

  • Sandonà D, Croce R, Pagano A, Crimi M and Bassi R (1998) Higher plant light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta 1365: 207–214

    PubMed  Google Scholar 

  • Sato N, Tsuzuki M, Matsuda Y, Ehara T, Osafune T and Kawaguchi A (1995) Isolation and characterization of mutants affected in lipid metabolism of Chlamydomonas reinhardtii. Eur J Biochem 230: 987–993

    PubMed  Google Scholar 

  • Schnell DJ and Blobel G (1993) Identification of intermediates in the pathway of protein import into chloroplasts and their localization to envelope contact sites. J Cell Biol 120: 103–115

    PubMed  Google Scholar 

  • Schuenemann D, Gupta S, Persello-Cartieaux F, Klimyuk VI, Jones JDG, Nussaume L and Hoffman NE (1998) A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc Natl Acad Sci USA 95: 10312–10316

    PubMed  Google Scholar 

  • Searle G, Brody SS and Van Hoek A (1990) Evidence for the formation of a chlorophyll a/zeaxanthin complex in lecithin liposomes from fluorescence decay kinetics. Photochem Photobiol 52: 401–407

    Google Scholar 

  • Selstam E (1998) Development of thylakoid membranes with respect to lipids. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 209–224. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Selstam E and Sandelius AS (1984) A comparison between prolamellar bodies and prothylakoid membranes of etioplasts of dark-grown wheat concerning lipid and polypeptide composition. Plant Physiol 76: 1036–1040

    Google Scholar 

  • Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811: 325–355

    Google Scholar 

  • Sigrist M and Staehelin LA (1994) Appearance of type 1, 2 and 3 light-harvesting complex II and light-harvesting complex I proteins during light-induced greening of barley (Hordeum vulgare) etioplasts. Plant Physiol 104: 135–145

    PubMed  Google Scholar 

  • Sigrist M, Zwillenberg C, Giroud C, Eichenberger W and Boschetti A (1988) Sulfolipid associated with the light-harvesting complex associated with Photosystem II apoproteins of Chlamydomonas reinhardtii. Plant Sci 58: 15–23

    Google Scholar 

  • Silva-Filho MC, Wieërs M-C, Flügge U-I, Chaumont F and Boutry M (1997) Different in vitro and in vivo targeting properties of the transit peptide of a chloroplast envelope inner membrane protein. J Biol Chem 272: 15264–15269

    PubMed  Google Scholar 

  • Soll J and Tien R (1998) Protein translocation into and across the chloroplast envelope membranes. Plant Mol Biol 38: 191–207

    PubMed  Google Scholar 

  • Smith TA and Kohorn BD (1994) Mutations in a signal sequence for the thylakoid membrane identify multiple protein transport pathways and nuclear suppressors. J Cell Biol 126: 365–374

    PubMed  Google Scholar 

  • Sundqvist C and Dahlin C (1997) With chlorophyll pigments from prolamellar bodies to light-harvesting complexes. Physiol Plant 100: 748–759

    Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    PubMed  Google Scholar 

  • Terao T and Katoh S (1989) Synthesis and breakdown of the apoproteins of light-harvesting chlorophyll a/b proteins in chlorophyll b-deficient mutants of rice. Plant Cell Physiol 30: 571–580

    Google Scholar 

  • Thornber JP and Highkin HR (1974) Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. Eur J Biochem 41: 109–116

    PubMed  Google Scholar 

  • Timko MP (1998) Pigment biosynthesis: chlorophlls, heme and carotenoids. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, pp 377–414. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Von Heijne G (1994) Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct 23: 167–192

    PubMed  Google Scholar 

  • Von Wettstein D, Gough S and Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039–1057

    PubMed  Google Scholar 

  • Waegemann K, Paulsen H and Soll J (1990) Translocation of proteins into isolated chloroplasts requires cytosolic factors to obtain import competence. FEBS Lett 261: 89–92

    Google Scholar 

  • White RA and Hoober JK (1994) Biogenesis of thylakoid membranes in Chlamydomonas reinhardtii y1. Plant Physiol 106: 583–590

    PubMed  Google Scholar 

  • White RA, Wolfe GR, Komine Y and Hoober JK (1996) Localization of light-harvesting complex apoproteins in the chloroplast and cytoplasm during greening of Chlamydomonas reinhardtii at 38 °C. Photosynth Res 47: 267–280

    Google Scholar 

  • Wolfe GR, Park H, Sharp WP and Hoober JK (1997) Light-harvesting complex apoproteins in cytoplasmic vacuoles in Chlamydomonas reinhardtii (Chlorophyta). J Phycol 33: 377–386

    Google Scholar 

  • Yang D-H, Webster J, Adam Z, Lindahl M and Andersson B (1998) Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of Photosystem II in response to elevated light intensities. Plant Physiol 118: 827–834

    PubMed  Google Scholar 

  • Yuan J, Cline K and Theg SM (1991) Cryopreservation of chloroplasts and thylakoids for studies of protein import and integration. Plant Physiol 95: 1259–1264

    Google Scholar 

  • Yuan J, Henry R and Cline K (1993) Stromal factor plays an essential role in protein integration into thylakoids that cannot be replaced by unfolding or by heat shock protein Hsp70. Proc Natl Acad Sci USA 90: 8552–8556

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenneth Hoober, J., Eggink, L.L. Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynthesis Research 61, 197–215 (1999). https://doi.org/10.1023/A:1006313703640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006313703640

Navigation