Skip to main content
Log in

A thermophilic cyanobacterium Synechococcus elongatus has three different Class I prenyltransferase genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Prenyltransferases (prenyl diphosphate synthases), which are a broad group of enzymes that catalyze the consecutive condensation of homoallylic diphosphate of isopentenyl diphosphates (IPP, C5) with allylic diphosphates to synthesize prenyl diphosphates of various chain lengths, have highly conserved regions in their amino acid sequences. Based on the above information, three prenyltransferase homologue genes were cloned from a thermophilic cyanobacterium, Synechococcus elongatus. Through analyses of the reaction products of the enzymes encoded by these genes, it was revealed that one encodes a thermolabile geranylgeranyl (C20) diphosphate synthase, another encodes a farnesyl (C15) diphosphate synthase whose optimal reaction temperature is 60 °C, and the third one encodes a prenyltransferase whose optimal reaction temperature is 75 °C. The last enzyme could catalyze the synthesis of five prenyl diphosphates of farnesyl, geranylgeranyl, geranylfarnesyl (C25), hexaprenyl (C30), and heptaprenyl (C35) diphosphates from dimethylallyl (C5) diphosphate, geranyl (C20) diphosphate, or farnesyl diphosphate as the allylic substrates. The product specificity of this novel kind of enzyme varied according to the ratio of the allylic and homoallylic substrates. The situations of these three S. elongatus enzymes in a phylogenetic tree of prenyltransferases are discussed in comparison with a mesophilic cyanobacterium of Synechocystis PCC6803, whose complete genome has been reported by Kaneko et al. (1996).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C.M. and Muth, J.D. 1997. Lipid activation of undecaprenyl pyrophosphate synthetase from Lactobacillus plantarum. Biochemistry 16: 2908–2915.

    Google Scholar 

  • Anderson, M.S., Yarger, J.G., Burck, C.L. and Poulter, C.D. 1989. Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae. J. Biol. Chem. 264: 19176–19184.

    Google Scholar 

  • Armstrong, G.A., Alberti, M., Leach, F. and Hearst, J.E. 1989. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol. Gen. Genet. 216: 254–268.

    Google Scholar 

  • Asai, K., Fujisaki, S., Nishimura, Y., Nishino, T., Okada, K., Nakagawa, T., Kawamukai, M. and Matsuda, H. 1994. The identification of Escherichia coli ispB (cel) gene encoding the octaprenyl diphosphate synthase. Biochem. Biophys. Res. Commun. 202: 340–345.

    Google Scholar 

  • Ashby, M.N. and Edwards, P.A. 1990. Elucidation of the defi-ciency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J. Biol. Chem. 265: 13157–13164.

    Google Scholar 

  • Baba, T. and Allen, C.M. 1980. Prenyl transferases from Micrococcus luteus: characterization of undecaprenyl pyrophosphate synthetase. Arch. Biochem. Biophys. 200: 474–484.

    Google Scholar 

  • Bartley, G.E. and Scolnik, P.A. 1994. Molecular biology of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 287–301.

    Google Scholar 

  • Brinkhaus, F.L. and Rilling, H.C. 1988. Purification of geranylgeranyl diphosphate synthase from Phycomyces blakesleanus. Arch. Biochem. Biophys. 266: 607–612.

    Google Scholar 

  • Cane, D.E. 1981. Biosynthesis of sesquiterpenes. In: J.W. Porter and S.L. Spurgeon (Eds.), Biosynthesis of Isoprenoid Compounds, pp. 283–373. Wiley, New York.

    Google Scholar 

  • Carattoli, A., Romano, N., Ballario, P., Morelli, G. and Macino, G. 1991. The Neurospora crassa carotenoid biosynthetic gene (albino 3) reveals highly conserved regions among prenyltransferases. J. Biol. Chem. 266: 5854–5859.

    Google Scholar 

  • Casey, P.J. and Seabra, M.C. 1996. Protein prenyltransferases. J. Biol. Chem. 271: 5289–5292.

    Google Scholar 

  • Chappell, J. 1995. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 521–547 (1995).

    Google Scholar 

  • Chen, A. and Poulter, C.D. 1993. Purification and characterization of farnesyl diphosphate/geranylgeranyl diphosphate synthase. A thermostable bifunctional enzyme from Methanobacterium thermoautotrophicum. J. Biol. Chem. 268: 11002–11007.

    Google Scholar 

  • Chen, A. and Poulter, C.D. 1994. Isolation and characterization of idsA: the gene for the short chain isoprenyl diphosphate synthase from Methanobacterium thermoautotrophicum. Arch. Biochem. Biophys. 314: 399–404.

    Google Scholar 

  • Chen, A., Kroon, P.A. and Poulter, C.D. 1994. Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure. Protein Sci. 3: 600–607.

    Google Scholar 

  • Clarke, C.F., Williams, W. and Teruya, J.H. 1991. Ubiquinone biosynthesis in Saccharomyces cerevisiae. Isolation and sequence of COQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene. J. Biol. Chem. 266: 16636–16644.

    Google Scholar 

  • Delourme, D., Lacroute, F. and Karst, F. 1994. Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast. Plant Mol. Biol. 26: 1867–1873.

    Google Scholar 

  • Ding, V.D., Sheares, B.T., Bergstrom, J.D., Ponpipom, M.M., Perez, L.B. and Poulter, C.D. 1991. Purification and characterization of recombinant human farnesyl diphosphate synthase expressed in Escherichia coli. Biochem. J. 275: 61–65.

    Google Scholar 

  • Fujii, H., Koyama, T. and Ogura, K. 1982a. Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim. Biophys. Acta 712: 716–718.

    Google Scholar 

  • Fujii, H., Koyama, T. and Ogura, K. 1982b. Hexaprenyl pyrophosphate synthetase from Micrococcus luteus B-P 26. Separation of two essential components. J. Biol. Chem. 257: 14610–14612.

    Google Scholar 

  • Fujisaki, S., Hara, H., Nishimura, Y., Horiuchi, K. and Nishino, T. 1990. Cloning and nucleotide sequence of the ispA gene responsible for farnesyl diphosphate synthase activity in Escherichia coli. J. Biochem. (Tokyo) 108.

  • Glomset, J.A., Gelb, M.H. and Farnsworth, C.C. 1990. Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem. Sci. 15: 139–142.

    Google Scholar 

  • Hedden, P. and Kamiya, Y. 1997. Gibberellin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 431–460.

    Google Scholar 

  • Jiang, Y., Proteau, P., Poulter, D. and Ferro-Novick, S. 1995. BTS1 encodes a geranylgeranyl diphosphate synthase in Saccharomyces cerevisiae. J. Biol. Chem. 270: 21793–21799.

    Google Scholar 

  • Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M. and Tabata, S. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3: 109–136.

    Google Scholar 

  • Katoh, S. 1988a. Prenylquinones. Meth. Enzymol. 167: 269–271.

    Google Scholar 

  • Katoh, S. 1988b. Photosystem I and photosystem II preparation from thermophilic Synechococcus. Meth. Enzymol. 167: 263–269.

    Google Scholar 

  • Keenan, M.V. and Allen, C.M.J. 1974. Phospholipid activation of Lactobacillus plantarum undecaprenyl pyrophosphate synthetase. Biochem. Biophys. Res. Commun 61: 338–342.

    Google Scholar 

  • Kleinig, H. 1989. The role of plastids in isoprenoid biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 39–59.

    Google Scholar 

  • Koike-Takeshita, A., Koyama, T., Obata, S. and Ogura, K. 1995. Molecular cloning and nucleotide sequences of the genes for two essential proteins constituting a novel enzyme system for heptaprenyl diphosphate synthesis. J. Biol. Chem. 270: 18396–18400.

    Google Scholar 

  • Koyama, T., Fujii, H. and Ogura, K. 1985. Enzymatic hydrolysis of polyprenyl pyrophosphates. Meth. Enzymol. 110: 153–155.

    Google Scholar 

  • Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T. and Ogura, K. 1993. Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus: molecular cloning, sequence determination, overproduction, and purification. J. Biochem. (Tokyo) 113: 355–363.

    Google Scholar 

  • Koyama, T., Tajima, M., Sano, H., Doi, T., Koike-Takeshita, A., Obata, S., Nishino, T. and Ogura, K. 1996. Identification of significant residues in the substrate binding site of Bacillus stearothermophilus farnesyl diphosphate synthase. Biochemistry 35: 9533–9538.

    Google Scholar 

  • Kuntz, M., Romer, S., Suire, C., Hugueney, P., Weil, J.H., Schantz, R. and Camara, B. 1992. Identification of a cDNA for the plastidlocated geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant J. 2: 25–34.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Google Scholar 

  • Liu, Y.-G. and Whittier, R.F. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674–681 (1995).

    Google Scholar 

  • Liu, Y.-G., Mitsukawa, N., Oosumi, T. and Whittier, R.F. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457–463.

    Google Scholar 

  • Math, S.K., Hearst, J.E. and Poulter, C.D.: The crtE gene in Erwinia herbicola encodes geranylgeranyl diphosphate synthase. Proc Natl Acad Sci USA 89: 6761–6764.

  • Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y., Nakamura, K. and Harashima, K. 1990. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J. Bact. 172: 6704–6712.

    Google Scholar 

  • Mumby, S.M., Casey, P.J., Gilman, A.G., Gutowski, S. and Sternweis, P.C. 1990. G protein gamma subunits contain a 20-carbon isoprenoid. Proc. Natl. Acad. Sci. USA 87: 5873–5877.

    Google Scholar 

  • Ogura, K., Koyama, T. 1998. Enzymatic aspects of isoprenoid chain elongation. Chem. Rev. 98: 1263–1276.

    Google Scholar 

  • Ohnuma, S.-i., Koyama, T. and Ogura, K. 1991. Purification of solanesyl-diphosphate synthase from Micrococcus luteus. A new class of prenyltransferase. J. Biol. Chem. 266: 23706–23713.

    Google Scholar 

  • Ohnuma, S.-i., Koyama, T. and Ogura, K. 1992. Chain length distribution of the products formed in solanesyl diphosphate synthase reaction. J. Biochem. 112: 743–749.

    Google Scholar 

  • Ohnuma, S.-i., Suzuki, M. and Nishino, T. 1994. Archaebacterial ether-linked lipid biosynthetic gene. Expression cloning, sequencing, and characterization of geranylgeranyl-diphosphate synthase. J. Biol. Chem. 269: 14792–14797.

    Google Scholar 

  • Ohnuma, S.-i., Hirooka, K., Hemmi, H., Ishida, C., Ohto, C. and Nishino, T. 1996a. Conversion of product specificity of archaebacterial geranylgeranyl-diphosphate syntahse. J. Biol. Chem. 271: 18831–18837.

    Google Scholar 

  • Ohnuma, S.-i., Nakazawa, T., Hemmi, H., Hallberg, A.M., Koyama, T., Ogura, K. and Nishino, T. 1986b. Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J. Biol. Chem. 271: 10087–10095.

    Google Scholar 

  • Ohnuma, S.-i., Narita, K., Nakazawa, T., Ishida, C., Takeuchi, Y., Ohto, C. and Nishino, T. 1996c. A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J. Biol. Chem. 271: 30748–30754.

    Google Scholar 

  • Ohnuma, S.-i., Hirooka, K., Ohto, C. and Nishino, T. 1997. Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyldiphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J. Biol. Chem. 272: 5192–5198.

    Google Scholar 

  • Ohto, C., Nakane, H., Hemmi, H., Ohnuma, S.-i., Obata, S. and Nishino, T. 1998. Overexpression of an archaeal geranylgeranyl diphosphate synthase in Escherichia coli cells. Biosci. Biotechnol. Biochem. 62: 1243–1246.

    Google Scholar 

  • Ohto, C., Ishida, C., Koike-Takeshita, A., Yokoyama, K., Muramatsu, M., Nishino, T. and Obata, S. 1999. Gene cloning and overexpression of a geranylgeranyl diphosphate synthase of an extremely thermophilic bacterium Thermus thermophilus. Biosci. Biotechnol. Biochem. 63: 261–270.

    Google Scholar 

  • Okada, K., Suzuki, K., Kamiya, Y., Zhu, X., Fujisaki, S., Nishimura, Y., Nishino, T., Nakagawa, T., Kawamukai, M. and Matsuda, H. 1996. Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. Biochim. Biophys. Acta 1302: 217–223.

    Google Scholar 

  • Okada, K., Minehira, M., Zhu, X., Suzuki, K., Nakagawa, T., Matsuda, H. and Kawamukai, M. 1997. The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. J. Bact. 179: 3058–3060.

    Google Scholar 

  • Poulter, C.D. and Rilling, H.C. 1981. Conversion of farnesyl pyrophosphate to squalene. In: J.W. Porter and S.L. Spurgeon (Eds.), Biosynthesis of Isoprenoid Compounds, Wiley, New York, pp. 413–441.

    Google Scholar 

  • Sagami, H., Morita, Y. and Ogura, K. 1994. Purification and properties of geranylgeranyl-diphosphate synthase from bovine brain. J. Biol. Chem. 269: 20561–20566.

    Google Scholar 

  • Sandmann, G. 1994. Carotenoid biosynthesis in microorganisms and plants. Eur. J. Biochem. 223: 7–24.

    Google Scholar 

  • Siebert, M., Bechthold, A., Melzer, M., May, U., Berger, U., Schröder, G., Schröder, J., Severin, K. and Heide, L. 1992. Ubiquinone biosynthesis. Cloning of the genes coding for chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyl transferase from Escherichia coli. FEBS Lett. 307: 347–350.

    Google Scholar 

  • Smith, D.B. and Corcoran, L.M. 1991. Expression and purification of glutatione-S-transferase fusion proteins. In: F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith and K. Struhl (Eds.), Current Protocols in Molecular Biology, Wiley, New York. pp. 16.7.1–16.7.8.

    Google Scholar 

  • Spear, D.H., Kutsunai, S.Y., Correll, C.C. and Edwards, P.A. 1992. Molecular cloning and promoter analysis of the rat liver farnesyl diphosphate synthase gene. J. Biol. Chem. 267: 14462–14469.

    Google Scholar 

  • Tachibana, A., Tanaka, T., Taniguchi, M. and Oi, S. 1993. Purification and characterization of geranylgeranyl diphosphate synthase from Methanobacterium thermoformicicum SF-4. Biosci. Biotechnol. Biochem. 57: 1129–1133.

    Google Scholar 

  • Takahashi, I. and Ogura, K. 1981. Farnesyl pyrophosphate synthase from Bacillus subtilis. J. Biochem. 89: 1581–1587.

    Google Scholar 

  • Takahashi, I., Ogura, K. and Seto, S. 1980. Heptaprenyl pyrophosphate synthetase from Bacillus subtilis. J. Biol. Chem. 255: 4539–4543.

    Google Scholar 

  • Tanaka, Y. 1991. Rubber and related polyprenols. Meth. Plant Biochem. 7: 519–536.

    Google Scholar 

  • Tanaka, Y., Kawahara, S., Eng, A.H., Takei, A. and Ohya, N. 1994. Structure of cis-polyisoprene from Lactarius mushrooms. Acta Biochim. Pol. 41: 303–309.

    Google Scholar 

  • Tarshis, L.C., Yan, M., Poulter, C.D. and Sacchettini, J.C. 1994. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-Å resolution. Biochemistry 33: 10871–10877.

    Google Scholar 

  • Tarshis, L., Proteau, P., Kellogg, B., Sacchettini, J. and Poulter, C. 1996. Regulation of product chain length by isoprenyl diphosphate synthases. Proc. Natl. Acad. Sci. USA 93: 15018–15023.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673–4680.

    Google Scholar 

  • Wilkin, D.J., Kutsunai, S.Y., Edwards, P.A. 1990. Isolation and sequence of the human farnesyl pyrophosphate synthetase cDNA. Coordinate regulation of the mRNAs for farnesyl pyrophosphate synthetase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and 3-hydroxy-3-methylglutaryl coenzyme A synthase by phorbol ester. J. Biol. Chem. 265: 4607–4614.

    Google Scholar 

  • Williams, J.G.K. 1988. Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Meth. Enzymol. 167: 766–778.

    Google Scholar 

  • Yamane, H.K., Farnsworth, C.C., Xie, H.Y., Howald, W., Fung, B.K., Clarke, S., Gelb, M.H. and Glomset, J.A. 1990. Brain G protein gamma subunits contain an all-transgeranylgeranylcysteine methyl ester at their carboxyl termini. Proc. Natl. Acad. Sci. USA 87: 5868–5872.

    Google Scholar 

  • Zang, F.L., Casey, P.J. 1996. Protein prenylation. Annu. Rev. Biochem. 65: 241–547.

    Google Scholar 

  • Zhu, X., Suzuki, K., Okada, K., Tanaka, K., Nakagawa, T., Kawamukai, M. and Matsuda, K. 1997. Cloning and functional expression of a novel geranylgeranyl pyrophosphate synthase gene from Arabidopsis thaliana in Escherichia coli. Plant Cell. Physiol. 38: 357–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohto, C., Ishida, C., Nakane, H. et al. A thermophilic cyanobacterium Synechococcus elongatus has three different Class I prenyltransferase genes. Plant Mol Biol 40, 307–321 (1999). https://doi.org/10.1023/A:1006295705142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006295705142

Navigation