Skip to main content
Log in

Why Study Vascular Factors in Glaucoma?

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

There is clinical and experimental evidence that both increased intraocular pressure and disturbed circulation are involved in the pathogenesis of glaucomatous damage. Among the many factors discussed, decreased blood pressure and vasospasm are the most important, and these factors may, at least in part, be therapeutically influenced. The basic underlying disorder might be a vascular dysfunction leading to local vasospasm and to systemic hypotension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flammer J, Gasser P, Prünte Ch, Yao K. The probable involvement of factors other than intraocular pressure in the pathogenesis of glaucoma. In: Drance SM, Van Buskirk EM, Neufeld AH, (eds) Pharmacology of glaucoma. Baltimore: Williams and Wilkins, 1992: 273-83.

    Google Scholar 

  2. Jonas JB, Stürmer J, Papastathopoulos KI, Meier-Gibbons F, Dichtl A. Optic disc size and optic nerve damage in normal pressure glaucoma. Br J Ophthalmol 1995; 79: 1102-5.

    PubMed  CAS  Google Scholar 

  3. Hamard P, Hamard H, Dufaux J, Quesnot S. Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open angle glaucoma and normal pressure glaucoma. Br J Ophthalmol 1994; 78: 449-53.

    PubMed  CAS  Google Scholar 

  4. Wolf S, Arend O, Sponsel WE, Schulte K, Cantor LB, Reim M. Retinal hemodynamics using scanner laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma. Ophthalmology 1993; 100: 1561-6.

    PubMed  CAS  Google Scholar 

  5. Richard G, Hackelbusch R, Schmidt KU, Schaefer M. Untersuchungen zur Haemodynamik des Auges bei Glaucoma chronicum simplex und low-tension Glaukom: eine videoangiographische Studie. Fortsch Ophthalmol 1988; 85: 369-72.

    CAS  Google Scholar 

  6. Michelson G, Langhans MI, Grohn MJM. Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open-angle glaucoma. J Glaucoma 1996; 5: 91-98.

    PubMed  CAS  Google Scholar 

  7. Kaiser HJ, Schoetzau A, Stümpfig D, Flammer J. Blood-flow velocities of the extraocular vessels in patients with high tension and normal tension primary open-angle glaucoma. Am J Ophthalmol 1997; 123: 320-7.

    PubMed  CAS  Google Scholar 

  8. Nasemann JE, Carl Th, Spiegel D. Measurement of systemic and ocular blood-flow velocities in normal-tension glaucoma. In: Kaiser HJ, Flammer J, Hendrickson Ph, (eds) Ocular Blood Flow. Glaucoma Meeting 1995. Basel: Karger, 1996: 207-16.

    Google Scholar 

  9. Gasser P, Flammer J. Blood-cell velocity in the nailfold capillaries of patients with normal-tension or high-tension glaucoma and of healthy controls. Am J Ophthalmol 1991; 111: 585-8.

    PubMed  CAS  Google Scholar 

  10. Drance SM, Douglas GR, Wijsman K, Schulzer M, Britton RJ. Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmol 1988; 105: 35-39.

    PubMed  CAS  Google Scholar 

  11. Stroman GA, Steward WC, Golnik KC, Curé JK, Olinger RE. Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol 1995; 113: 168-72.

    PubMed  CAS  Google Scholar 

  12. Susanna R, Basseto KL. Hemorrhage of the optic disc and neurosensorial dysacusia. J Glaucoma 1995; 1: 248-53.

    Google Scholar 

  13. Waldmann E, Gasser P, Dubler B, Huber Ch, Flammer J. Silent myocardial ischemia in glaucoma and cataract patients. Graefe’s Arch Clin Exp Ophthalmol 1996; 234: 595-8.

    CAS  Google Scholar 

  14. Flammer J. To what extent are vascular factors involved in the pathogenesis of glaucoma? In: Kaiser HJ, Flammer J, Hendrickson Ph (eds) Ocular Blood Flow. Glaucoma Meeting 1995. Basel: Karger, 1996: 12-39.

    Google Scholar 

  15. Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt C. Hypertension, perfusion pressure, and primary open-angle glaucoma. Arch Ophthalmol 1995; 113: 216-21.

    PubMed  CAS  Google Scholar 

  16. Bechetoille A, Bresson-Dumont H. Diurnal and nocturnal blood pressure drops in patients with focal ischemic glaucoma. Graefe’s Arch Clin Exp Ophthalmol 1994; 232: 675-9.

    CAS  Google Scholar 

  17. Drance SM, Sweeney VP, Morgan RW, Feldman F. Studies of factors involved in the production of low-tension glaucoma. Arch Ophthalmol 1973; 89: 457-65.

    PubMed  CAS  Google Scholar 

  18. Freyler H, Menapace R. Ist die Erblindung am Glaukom vermeidbar? Spektrum Augenheilk 1988; 2: 121-7.

    Google Scholar 

  19. Demailly P, Cambien F, Loum F, Baron P, Chevallier B. Do patients with low-tension glaucoma have particular cardiovascular characteristics? Ophthalmologica 1984; 188: 65-75.

    PubMed  CAS  Google Scholar 

  20. Gramer E, Leydhecker W. Glaukom ohne Hochdruck: eine klinische Studie. Klin Monatsbl Augenheilk 1985; 186: 262-7.

    CAS  Google Scholar 

  21. Gasser P, Flammer J. Influence of vasospasm on visual function. Doc Ophthalmol 1987; 66: 3-18.

    Article  PubMed  CAS  Google Scholar 

  22. Gass A, Flammer J, Linder L, Romerio SC, Gasser P, Haefeli WE. Inverse correlation between endothelin-1-induced peripheral microvascular vasoconstriction and blood pressure in glaucoma patients. Graefe’s Arch Clin Exp Ophthalmol 1997; 235: 634-38.

    Article  CAS  Google Scholar 

  23. Gasser P. Vasospams - A Generalized Vascular Abnormality. Schweiz Rundschau Med 1994; 83: 149-53.

    CAS  Google Scholar 

  24. Gasser P, Flammer J, Mahler F. Is the evidence of vasospasms in the eye the manifestation of a generalized vasospastic disorder? In: Strano A, Novo S (eds) Advances in Vascular Pathology. Amsterdam: Elsevier Science Publishers BV, 1989: 1215-20.

    Google Scholar 

  25. Gasser P. Die Bedeutung funktioneller Vasospasmen. Dtsch med Wschr 1989; 114: 107-15.

    PubMed  CAS  Google Scholar 

  26. Gasser P. Clinical syndromes with vasoconstrictor response. Wien Klin Wschr 1991; 103: 217-21.

    PubMed  CAS  Google Scholar 

  27. Gasser P. Die Bedeutung der Video-Kapillarmikroskopie am Nagelfalz zur Abklärung akraler vasospastischer Phänomene. Bern: Hans Huber, 1993.

    Google Scholar 

  28. Bedarida GV, Kim D, Blaschke TF, Hoffman BB. Venodilation in Raynaud’s disease. Lancet 1993; 342: 1451-4.

    Article  PubMed  CAS  Google Scholar 

  29. Chauhan A, Mullins PA, Taylor G, Petch MC, Schofield PM. Both endothelium-dependent and endothelium-independent function is impaired in patients with angina pectoris and normal coronary angiograms. Eur Heart J 1997; 18: 60-68.

    PubMed  CAS  Google Scholar 

  30. Thomsen LL, Iversen HK, Brinck TA, Olesen J. Arterial super-sensitivity to nitric oxide (nitroglycerin) in migraine sufferers. Cephalalgia 1993; 13: 395-9.

    Article  PubMed  CAS  Google Scholar 

  31. Zamora MR, O’Brien RF, Rutherford RB, Weil JV. Serum endothelin-1 concentrations and cold provocation in primary Raynaud’s phenomenon. Lancet 1990; 336: 1144-7.

    Article  PubMed  CAS  Google Scholar 

  32. Sugiyama T, Moriya S, Oku H, Azuma I. Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv Ophthalmol 1995; 39(1 Suppl): 49S-56S.

    Google Scholar 

  33. Kaiser HJ, Flammer J, Wenk M, Lüscher TF. Endothelin-1 plasma levels in normal-tension glaucoma: abnormal response to postural changes. Graefe’s Arch Clin Exp Ophthalmol 1995; 233: 484-8.

    CAS  Google Scholar 

  34. Färkkilä M, Palo J, Saijonmaa O, Fyhrquist F. Raised plasma endothelin during acute migraine attack. Cephalalgia 1992; 12: 383-4.

    Article  PubMed  Google Scholar 

  35. Toyo-oka T, Aizawa T, Suzuki N, Hirata Y, Miyauchi T, Shin WS, Yanagisawa M, Masaki T, Sugimoto T. Increased plasma level of endothelin-1 and coronary spasm induction in patients with vasospastic angina pectoris. Circulation 1991; 83: 476-83.

    PubMed  CAS  Google Scholar 

  36. Meyer P, Flammer J, Lüscher TF. Endothelium-dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. Invest Ophthalmol Vis Sci 1993; 34: 3614-21.

    PubMed  CAS  Google Scholar 

  37. Haefliger IO, Flammer J, Lüscher TF. Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci 1992; 33: 2340-43.

    PubMed  CAS  Google Scholar 

  38. Haefliger IO, Flammer J, Lüscher TF. Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci 1993; 34: 1722-30.

    PubMed  CAS  Google Scholar 

  39. Cioffi GA, Orgül S, Onda E, Bacon DR, Van Buskirk EM. An in vivo model of chronic optic nerve ischemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. Curr Eye Res 1995; 14: 1147-53.

    PubMed  CAS  Google Scholar 

  40. Burnstock G. Integration of factors controlling vascular tone. Overview. Anesthesiology 1993; 79: 1368-80.

    PubMed  CAS  Google Scholar 

  41. Coffman JD, Cohen RA. Role of aipha-adrenoreceptor subtypes medating sympathetic vasoconstriction in human digits. Europ J Clin Invest 1988; 18: 309-13.

    Article  PubMed  CAS  Google Scholar 

  42. Gennari C, Fischer JA. Cardiovascular action of calcitonin gene-related peptide in humans. Calcif Tissue Int 1985; 37: 581-4.

    PubMed  CAS  Google Scholar 

  43. Wallengren J, Ekman R, Sundler F. Occurence and distribution of neuropeptides in the human skin: an immunocystochemical and immunohistochemical study on normal skin and blister fluid from inflamed skin. Acta Derm Venerol 1987; 67: 185-92.

    PubMed  CAS  Google Scholar 

  44. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-dependent response in mammalian blood vessels. Nature 1986; 327: 524-6.

    Article  Google Scholar 

  45. Yanigasawa M, Kurihara H, Kimura S. A novel potent vasoconstrictor peptide produced by endothelial cells. Nature 1988; 332: 411-5.

    Article  Google Scholar 

  46. Gasser P, Flammer J, Guthauser U, Niesel P, Mahler F, Linder HR. Bedeutung des vasospastischen Syndroms in der Augenheilkunde. Klin Monatsbl Augenheilk 1986; 188: 398-9.

    Article  Google Scholar 

  47. Gasser P. Ocular vasospasm: A risk factor in the pathogenesis of low-tension glaucoma. Int Ophthalmol 1989; 13: 281-90.

    Article  PubMed  CAS  Google Scholar 

  48. Gasser P, Flammer J, Guthauser U, Mahler F. Do vasospasms provoke ocular diseases? Angiology 1990; 41: 213-20.

    PubMed  CAS  Google Scholar 

  49. Gasser P, Flammer J, Mahier F. Der Einsatz von Kalziumantagonisten bei der Behandlung okulärer Durchblutungsstörungen im Rahmen des vasospastischen Syndroms. Schweiz med Wschr 1988; 118: 201-2.

    PubMed  CAS  Google Scholar 

  50. Gasser P, Flammer J. Short and long term effect of nifedipine on the visual field in patients with presumed. vasospasm. J Int Med Res 1990; 18: 334-9.

    PubMed  CAS  Google Scholar 

  51. Kitazawa J, Shirai H, Go FJ. The effect of calcium antagonist on visual field in low-tension glaucoma. Graefe’s Arch Clin Exp Ophthalmol 1989; 227: 408-12.

    Article  CAS  Google Scholar 

  52. Gasser P. Welche Möglichkeiten bestehen zur Verbesserung der Durchblutungssituation bei Verdacht auf Mikrozirkulationsstörungen. In: Prünte C, Flammer J (eds) Das Glaukom in der Praxis. Glaucoma Meeting 1996. Basel: Karger, 1997: 202-13.

    Google Scholar 

  53. Orgül S, Flammer J. Perilimbal aneurysms of conjunctival vessels in glaucoma patients. Ger J Ophthalmol 1995; 4: 94-6.

    PubMed  Google Scholar 

  54. Graf T, Flammer J, Prünte C, Hendrickson P. Gliosis-like retinal alterations in glaucoma patients. J Glaucoma 1993; 2: 257-9.

    CAS  PubMed  Google Scholar 

  55. Chihara E, Honda Y. Preservation of nerve fiber layer by retinal vessels in glaucoma. Ophthalmology 1992; 99: 208-14.

    PubMed  CAS  Google Scholar 

  56. Shihab ZM, Beebe WE, Wentlandt T. Possible significant of cilioretinal arteries in open-angle glaucoma. Ophthalmology 1985; 92: 880-3.

    PubMed  CAS  Google Scholar 

  57. Rader J, Feuer WJ, Anderson DR. Peripapillary vasoconstriction in the glaucomas and the anterior ischemic optic neuropathies. Am J Ophthalmol 1994; 117: 72-80.

    PubMed  CAS  Google Scholar 

  58. Ong K, Farinelli A, Billson F, Houang M, Stern M. Comparative study of brain magnetic resonance imaging findings in patients with low-tension glaucoma and control subjects. Ophthalmology 1995; 102: 1632-8.

    PubMed  CAS  Google Scholar 

  59. Meyer P, Flammer J, Lüscher TF. Effect of dipyridamole on vascular response of porcine ciliary arteries. Curr Eye Res 1996; 15: 387-93.

    PubMed  CAS  Google Scholar 

  60. Kaiser HJ, Stümpfig D, Flammer J. Short-term effect of dipyridamole on blood-flow velocities in the extraocular vessels. Int Ophthalmol 1996; 19: 355-8.

    Article  CAS  Google Scholar 

  61. Dettmann ES, Flammer J, Haefliger I. Magnesium and vascular tone modulation. In: Drance SM (ed) Glaucoma ocular blood flow and drug treatment. Amsterdam, New York: Kugler Publications, 1997: 79-86.

    Google Scholar 

  62. Gaspar AZ, Gasser P, Flammer J. The influence of magnesium on visual field and peripheral vasospasm in glaucoma. Ophthalmologica 1995: 209: 11-3.

    Article  PubMed  CAS  Google Scholar 

  63. Kaiser HJ, Flammer J, Graf T, Stümpfig D. Systemic blood pressure in glaucoma patients. Graefe’s Arch Clin Exp Ophthalmol 1993; 231: 677-80.

    Article  CAS  Google Scholar 

  64. Hayreh SS, Zimmerman B, Podhajsky P, Alward WLM. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 1994; 117: 603-24.

    PubMed  CAS  Google Scholar 

  65. Cartwright MJ, Grajewski AL, Friedberg ML, Anderson DR, Richards DW. Immune-related disease and normal-tension glaucoma. Arch Ophthalmol 1992; 110: 500-2.

    PubMed  CAS  Google Scholar 

  66. Hayreh SS, Bill A, Sperber GO. Effects of high intraocular pressure on the glucose metabolism in the retina and optic nerve in old atherosclerotic monkeys. Graefe’s Arch Clin Exp Ophthalmol 1994; 232: 745-52.

    CAS  Google Scholar 

  67. Stewart WC, Sine C, Sutherland S, Stewart JA. Total cholesterol and high-density lipoprotein levels as risk factors for increased intraocular pressure. Am J Ophthalmol 1996; 122: 575-7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasser, P. Why Study Vascular Factors in Glaucoma?. Int Ophthalmol 22, 221–225 (1998). https://doi.org/10.1023/A:1006294824980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006294824980

Navigation