Skip to main content
Log in

Principles of contact lens tonometry

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

We constructed a contact lens with an integrated pressure-sensing device. It is housed in a container with three force-sensing elements, each 120° apart, enabling measurement of the appositional force, i.e., the force with which the instrument is held against the eye. In part 1 of the study, the lens' precision was tested against a manometric transducer in five eye bank eyes. The second part examined pressure as a factor dependent on the appositional force, and the third part of the study investigated the correct procedure for measuring baseline eye pressure, p0.

The instrument described here allows investigation of three examination parameters: (a) the measurement of p0, the pressure independent of the appositional force; (b) the continuous measurement of the intraocular pressure (IOP); (c) the measurement of the IOP dependent on the appositional force, including artificial IOP elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maklakoff C. L’ophtalmomérie. Arch Ophthalmol (Paris) 1885; 5: 159¶ 165.

    Google Scholar 

  2. Maurice DM. An applanation tonometer of new principle. Brit J Ophthal 1951; 35: 178¶ 182.

    PubMed  CAS  Google Scholar 

  3. Goldmann H, Schmidt T. Ñber Applanationstonometrie. Ophthalmologica 1957; 34: 221¶ 242.

    Article  Google Scholar 

  4. Mackay RS, Marg E. Fast, automatic, electronic tonometers based on an exact theory. Acta Ophthalmologica 1959; 37: 495¶ 507.

    Article  PubMed  CAS  Google Scholar 

  5. Entenmann B, Robert Y, Pirani P, Kanngiesser H, Dekker P. Contact lens tonometry ¶application in humans. Invest Ophthalmol Vis Sci. 1997; 38: 2447¶ 2451.

    PubMed  CAS  Google Scholar 

  6. Collins R, van der Werif TJ. Mathematical models of the dynamics of the human eye. In: Levin S (ed) Lecture Notes in Biomathematics. New York: Springer, 1980: Vol 34(2¶ 3).

    Google Scholar 

  7. Dreyer M. Kapillarer Flüssigkeitsanstieg zwischen parallelen Platten unter kompensierter Gravitation. Fortschr. Ber. Düsseldorf: VDI-Verlag, 1994: VDI Reihe 7 Nr 24.

    Google Scholar 

  8. Tiffany JM. Viscoelastic properties of human tears and polymer solutions. In: Sullivan DA (ed) Lacrimal Gland, Tear Film, and Dry Eye Syndromes. New York: Plenum Press, 1994: 267¶ 270.

    Google Scholar 

  9. Miller D. Measurement of the surface tension of tears. Arch Ophthalmol 1969; 82: 368¶ 371.

    PubMed  CAS  Google Scholar 

  10. Mishima S. Some physiological aspects of the precorneal tear film. Arch Ophthalmol 1965; 73: 233¶ 241.

    PubMed  CAS  Google Scholar 

  11. Imbert A. Théorie des ophtalmotonomè tres. Arch Ophthalmol Paris. 1885; 5: 358¶ 363.

    Google Scholar 

  12. Fick A. Ñber die Messung des Druckes im Auge. Pflügers Arch 1888; 42: 86¶ 100.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekker, P.W., Robert, Y.C.A., Kanngiesser, H. et al. Principles of contact lens tonometry. Int Ophthalmol 22, 105–111 (1998). https://doi.org/10.1023/A:1006292102204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006292102204

Navigation