Skip to main content
Log in

Complex flow patterns in the great vessels: a review

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

The article reviews the applications of magnetic resonance velocity mapping based on phase shifts in the protons to quantify blood flow velocity and blood flow volume. The method can be used to study normal physiology of blood flow in the aorta and its major branches, including forward and backward flow, to measure the aortic valve function in aortic valvular disease, stenosis and regurgitation, as well as pulmonary artery flow velocities in pulmonic insufficiency and regurgitation. Superior vena cava flows, pulmonary vein flows, left-to-right shunts, atrial and ventricular pulmonary conduit flows can also be measured. Two- and three-directional velocity mapping is reviewed and can be used to study three- or four-D flows in the aorta and the major arteries in great detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1982; 1: 197-203.

    Google Scholar 

  2. Van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 1984; 8: 429-436.

    Google Scholar 

  3. Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984; 8: 588-593.

    Google Scholar 

  4. Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986; 10(5): 715-722.

    Google Scholar 

  5. Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RSO, Longmore DB. In vivo validation of MR velocity imaging. J Comput Assist Tomogr 1987; 11(5): 751-756.

    Google Scholar 

  6. Klipstein RH, Firmin DN, Underwood SR, Rees RSO, Longmore DB. Blood flow patterns in the human aorta studied by magnetic resonance. Br Heart J 1987; 58: 316-323.

    Google Scholar 

  7. Bogren HG, Klipstein RH, Firmin DN, Mohiaddin RH, Underwood SR, Rees RSO, Longmore DB. Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. Am Heart J 1989; 117(6): 1214-1222.

    Google Scholar 

  8. Mostbeck GH, Caputo GR, Higgins CB. MR measurement of blood flow in the cardiovascular system. Am J Radiol 1992; 159: 453-461.

    Google Scholar 

  9. Ståhlberg F, Ericsson A, Nordell B, Thomsen C, Henriksen O, Persson BRR. MR imaging, flow and motion. Acta Radiol 1992; 33(3): 179-200.

    Google Scholar 

  10. Mohiaddin RH, Longmore DB. Functional aspects of cardiovascular nuclear magnetic resonance imaging. Techniques and application. Circulation 1993; 88(1): 264-281.

    Google Scholar 

  11. Maier SE, Meier D, Boesiger P, Moser UT, Vieli A. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology 1989; 171: 487-492.

    Google Scholar 

  12. Pettigrew RI, Dannels W, Galloway JR, Pearson T, Millikan W, Henderson JM, Peterson J, Bernardino ME. Quantitative phase-flow MR imaging in dogs by using standard sequences: comparison with in vivo-flow meter measurements. Am J Roentgenol 1987; 148: 411-414.

    Google Scholar 

  13. Hundley WG, Li HF, Hillis LD, Meshack BM, Lange RA, Willard JE, Landau C, Peshock RM. Quantitation of cardiac output with velocity-encoded, phase-difference magnetic resonance imaging. Am J Cardiol 1995; 75: 1250-1255.

    Google Scholar 

  14. Bogren HG, Buonocore MH. Blood flow measurements in the aorta and major arteries with MR velocity mapping. J Magn Reson Imaging 1994; 4: 119-130.

    Google Scholar 

  15. Dulce M, Mostbeck GH, O'Sullivan m, Cheitlin MD, Caputo GR, Higgins CB. Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology 1992; 185: 235-240.

    Google Scholar 

  16. Honda N, Machida K, Hashimoto M, Mamiya T, Takahashi T, Kamano T, Kashimada A, Inoue Y, Tanaka S, Yoshimoto N, Matsuo H. Aortic regurgitation: quantitation with MR imaging velocity mapping. Radiology 1993; 186: 189-194.

    Google Scholar 

  17. Sondergaard L, Lindvig K, Hildebrandt P et al. Quantification of aortic regurgitation by magnetic resonance velocity mapping. Am Heart J 1993; 125: 1081-1090.

    Google Scholar 

  18. Kilner PJ, Firmin DN, Rees RSO, Martinez J, Pennell DJ, Mohiaddin RH, Underwood SR, Longmore DB. Valve and great vessel stenosis: assessment with MR jet velocity mapping. Radiology 1991; 178: 229-235.

    Google Scholar 

  19. Kilner PJ, Manzara CC, Mohiaddin RH, Pennell DJ et al. Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation 1993; 87(4): 1239-1248.

    Google Scholar 

  20. Bogren HG, Klipstein RH, Mohiaddin RH et al. Pulmonary artery distensibilty and blood flow patterns: a magnetic resonance study of normal subjects and of patients with pulmonary arterial hypertension. Am Heart J 1990; 118: 990-999.

    Google Scholar 

  21. Kondo C, Caputo GR, Masui T et al. Pulmonary hypertension: pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology 1992; 183: 751-758.

    Google Scholar 

  22. Mohiaddin RH, Paz R, Theodoropoulos S, Firmin DN, Longmore DB. Magnetic resonance characterization of pulmonary arterial blood flow after single lung transplantation. J Thorac Cardiovasc Surg 1991; 101: 1016-1023.

    Google Scholar 

  23. Mohiaddin RH, Wann SL, Underwood SR, Firmin DN, Rees RS, Longmore DB. Vena caval flow: assessment with cine MR velocity mapping. Radiology 1990; 177: 537-541.

    Google Scholar 

  24. Mohiaddin RH, Wann SL, Underwood SR, Firmin DN, Rees RS, Longmore DB. Vena caval flow: assessment with cine MR velocity mapping. Radiology 1990; 177: 537-541.

    Google Scholar 

  25. Mohiaddin RH, Amanuma M, Kilner PJ, Pennell DJ, Manzara C, Longmore DB. MR phase-shift velocity mapping of mitral and pulmonary venous flow. J Comput Assist Tomogr 1991; 15: 237-243.

    Google Scholar 

  26. Heidenreich PA, Steffens J, Fujita N, O'Sullivan M, Caputo GR, Foster E, Higgins CB. Evaluation of mitral stenosis with velocity-encoded cine-magnetic resonance imaging. Am J Cardiol 1995; 75: 365-369.

    Google Scholar 

  27. Kayser HWM, Stoel BC, van der Wall EE, van der Geest RJ, de Roos A. MR velocity mapping of tricuspid flow: correction for through-plane motion. J Magn Reson Imaging 1997; 7: 669-673.

    Google Scholar 

  28. Mohiaddin RH, Gatehouse PD, Henien M, Firmin DN. Cine MR Fourier velocimetry of blood flow through cardiac valves: comparison with Doppler echocardiography. J Magn Reson Imaging 1997; 7: 657-663.

    Google Scholar 

  29. Steffens JC, Bourne MW, Sakuma H, O'Sullivan M, Higgins CB. Quantitation of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation 1994; 90(2): 937-943.

    Google Scholar 

  30. Szolar DH, Sakuma H, Higgins CB. Cardiovascular applications of magnetic resonance flow and velocity measurements. J Magn Reson Imaging 1996; 6(1): 78-89.

    Google Scholar 

  31. Brenner LD, Caputo GR, Mostbeck G, Steiman D, Dulce M, Cheitlin MD, O'Sullivan M, Higgins CB. Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 1992; 20: 1246-1250.

    Google Scholar 

  32. Rees RSO, Firmin DN, Mohiaddin RH, Underwood SR, Longmore DB. Application of flow measurements by magnetic resonance velocity mapping to congenital heart disease. Am J Cardiol 1989; 64: 953-956.

    Google Scholar 

  33. Rees RSO, Sommerville J, Underwood SR, Wright J, Firmin DN, Klipstein RH, Longmore DB. Magnetic resonance imaging of the pulmonary arteries and their systemic connections in pulmonary atresia: comparison with angiographic and surgical findings. Br Heart J 1987; 58: 621-626.

    Google Scholar 

  34. Martinez JE, Mohiaddin RH, Kilner PJ, Khaw K, Rees S, Somerville J, Longmore DB. Obstruction in extracardiac ventriculopulmonary conduits: value of nuclear magnetic resonance imaging with velocity mapping and Doppler echocardiography. J Am Coll Cardiol 1992; 20: 338-344.

    Google Scholar 

  35. Rebergen SA, Ottenkamp J, Doornbos J, van der Wall EE, Chin JGJ, de Roos A. Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 1993; 21: 123-131.

    Google Scholar 

  36. Yang GZ, Burger P, Mohiaddin RH. In vivo blood flow analysis and animation for magnetic resonance imaging. Proc Int Soc Opt Engineering (SPIIE) 1990; 1233: 176-182.

    Google Scholar 

  37. Mohiaddin RH, Yang GZ, Burger P, Firmin DN, Longmore DB. Automatic enhancement, animation, and segmentation of flow in the peripheral arteries from magnetic resonance phase shift velocity mapping. J Comput Assist Tomogr 1992; 16: 176-181.

    Google Scholar 

  38. Napel S, Lee DH, Fryane R, Rutt BK. Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase contrast MR imaging. J Mag Reson Imaging 1992; 2: 143-153.

    Google Scholar 

  39. Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP. Computer animation of the time dependent flow field in a human left ventricle: an in vivo NMR phase velocity encoding study [Abstract]. Soc Magn Reson Med 1992; 2: 2515.

    Google Scholar 

  40. Yang GZ, Burger P, Kilner PJ, Mohiaddin RH. In vivo blood flow visualization with magnetic resonance imaging. IEEE Proceedings of Visualization, San Diego, Calif. 1991: 202-209.

  41. Buonocore MH. Algorithms for improving streamlines in 3-D phase contrast angiography. Magn Reson Med 1994; 31: 22-30.

    Google Scholar 

  42. Mohiaddin RH, Yang GZ, Kilner PJ. Visualization of flow by vector analysis of multidirectional cine magnetic resonance velocity mapping: technique and application. J Comput Assist Tomogr 1994; 18: 383-392.

    Google Scholar 

  43. Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 1993; 88(5) Part 1: 2235-2247.

    Google Scholar 

  44. Bogren HG, Mohiaddin RH, Yang GZ, Kilner PJ, Firmin DN. Magnetic resonance velocity vector mapping of blood flow in thoracic aortic aneurysms and grafts. J Thorac Cardiovasc Surg 1995; 110(3): 704-714.

    Google Scholar 

  45. Bogren HG, Mohiaddin RH, Kilner PJ, Jimenez-Borreguero LJ, Yang GZ, Firmin DN. Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease. J Magn Reson Imaging 1997; 7(5): 784-793.

    Google Scholar 

  46. Buonocore MH. Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn Reson Med 1998; 40: 210-226.

    Google Scholar 

  47. Yang GZ, Kilner PJ, Wood NB, Underwood SR, Firmin DN. Computation of flow pressure fields from magnetic resonance velocity mapping. Magn Reson Med 1996; 36: 520-526.

    Google Scholar 

  48. Buonocore MH, Bogren HG, Analysis of flow patterns using MRI. Intern J Card Imag 1999; 15: 99-103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogren, H.G., Buonocore, M.H. Complex flow patterns in the great vessels: a review. Int J Cardiovasc Imaging 15, 105–113 (1999). https://doi.org/10.1023/A:1006281923372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006281923372

Navigation