Skip to main content
Log in

Carbonaceous Particle Hydration III

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Previous soot hydration studies have been extended to compare the water uptake properties of soots from selected fuels (JP-8 Jet fuel, kerosene, diesel, and metal containing and S-containing synthetics) prepared under varying conditions with corresponding n-hexane model soots. Adsorption and desorption isotherms have yielded such adsorption parameters as the surface coverages at the limit of chemisorption and at 83% relative humidity (RH). These values increase with soot surface oxidation over the range 35–85% RH, while hydration levels at lower RH down to 22% are a function of fuel composition and combustion conditions, thus determining the extent of water uptake at higher RH. Both S- and metal-containing soots exhibit higher levels of hydration than those of the base fuel soots, a result with its origin in availability of sulfate and metal centers at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhter, M. S., Chughtai, A. R., and Smith, D. M., 1991: Spectroscopic studies of oxidized soots, Appl. Spectrosc. 45(4), 653–665.

    Google Scholar 

  • Bradley, R. H. and Rand, B., 1993: The adsorption of vapours by activated and heat-treated microporous carbons, Part 2, Assessment of surface polarity using water adsorption, Carbon 31(2), 269–272.

    Google Scholar 

  • Brodzinsky, R., Chang, S. G., Markowitz, S. S., and Novakov, T., 1980: Kinetics and mechanism for the catalytic oxidation of sulfur dioxide on carbon in aqueous suspension, J. Phys. Chem. 84, 3354–3359.

    Google Scholar 

  • Carrasco-Marin, F., Mueden, A., Centeno, T. A., Stoeckli, H. F., and Moreno-Castilla, C., 1997: Water adsorption on activated carbons with different degrees of oxidation, J. Chem. Soc., Faraday Trans. 93(12), 2211–2215.

    Google Scholar 

  • Chang, S. G., Toossi, R., and Novakov, T., 1981: The importance of soot particles and nitrous acid in oxidizing SO2 in atmospheric aqueous droplets, Atmos. Environ. 15(7), 1287–1292.

    Google Scholar 

  • Chughtai, A. R., Peterson, J. E., Jassim, J. A., Stedman, D. H., and Smith, D.M., 1991: Spectroscopic and solubility characteristics of oxidized soots, Aerosol Sci. & Technol. 15(2), 112–126.

    Google Scholar 

  • Chughtai, A. R., Brooks, M. E., and Smith, D. M., 1993: Effect of metal oxides and black carbon (soot) on SO2/O2/H2O reaction systems, Aerosol Sci. Technol. 19, 121–132.

    Google Scholar 

  • Chughtai, A. R., Gordon, S. A., and Smith, D. M., 1994: Kinetics of the hexane soot reaction with NO2/N2O4 at low concentration, Carbon 32(3), 405–416.

    Google Scholar 

  • Chughtai, A. R., Brooks, M. E., and Smith, D.M., 1996: Hydration of black carbon, J. Geophys. Res. Atmos. 101(D14), 19,505–19,514.

    Google Scholar 

  • Chughtai, A. R., Williams, G. R., Atteya, M. M. O., Miller, N. J., and Smith, D. M., 1999: Carbonaceous particle hydration, Atmospheric Environment 33, 2679–2687.

    Google Scholar 

  • Chughtai, A. R., Atteya, M. M. O., Kim, J., Konowalchuck, B. K., and Smith, D. M., 1998: Adsorption and adsorbate interaction at soot particle surfaces, Carbon 36(11), 1573–1589.

    Google Scholar 

  • Davini, P., 1993: Adsorption and desorption of sulfur dioxide from simulated flue gas on active carbon: the effect of ash contents, Carbon 31, 47–51.

    Google Scholar 

  • Dubinin, M. M., 1966: Porous structure and adsorption properties of active carbons, in P. L. Walker Jr (ed.), Chemistry and Physics of Carbon., Vol. 2, Marcel Dekker, New York, p. 51.

    Google Scholar 

  • Feitelberg, A. S., Longwell, J. P., and Sarofim, A. F., 1993: Metal enhanced soot and PAH formation, Combustion and Flame 92, 241–253.

    Google Scholar 

  • Harrison, R. M. and Pio, C. A., 1983: Kinetics of SO2 oxidation over carbonaceous particles in the presence of H2O, NO2, NH3 and O3, Atmospheric Environment 17, 1261–1275.

    Google Scholar 

  • Kalberer, M., Tabor, K., Ammann, M., Parrat, Y., Weingartner, E., Piguet, D., Rossler, E., Jost, T. D., Turber, A., Gaggeler, H. W., and Baltensperger, U., 1996: Heterogeneous chemical-processing of NO2 by monodisperse carbon aerosols at very low concentrations, J. Phys. Chem. 100(38), 15487–15493.

    Google Scholar 

  • Kobayashi, M., Ishikawa, E., and Toda, Y., 1993: Experimental relation between Dubinin-Radushkevich equation and Langmuir equation for various adsorbates on many carbons, Carbon 31, 990–992.

    Google Scholar 

  • Lammel, G. and Novakov, T., 1995: Water nucleation properties of carbon black and diesel soot particles, Atmospheric Environment 29, 813–823.

    Google Scholar 

  • Lee Jr., R. E., Goranson, S. S., Enrione, R. E., and Morgan, G. B., 1972: National Air Surveillance Cascade Impactor Network II. Size distribution measurements of trace metal compounds, Environ. Sci. Technol. 6(12), 1025–1030.

    Google Scholar 

  • Lynch, T. R., Chughtai, A. R., and Smith, D. M., 1995: Upgrade of older FTIR systems, American Laboratory 27(16), 20N–20Q.

    Google Scholar 

  • Marsh, H. and Siemieniewska, T., 1967: Adsorption of CO2 on carbonized anthracite: interpretation by Dubinin theory, Fuel 46, 441–457.

    Google Scholar 

  • McDow, S. R., Vartianen, M., Sun, Q., Hong, Y., Yao, Y., and Kamens, R. M., 1995: Combustion aerosol water content and its effect on polycyclic aromatic hydrocarbons reactivity, Atmospheric Environment 29, 791–797.

    Google Scholar 

  • Penner, J. E., Eddleman, H., and Novakov, T., 1993: Towards the development of a global inventory for black carbon emissions, Atmospheric Environment 27A, 1277–1295.

    Google Scholar 

  • Rogaski, C. A., Golden, D. M., and Williams, L. R., 1997: Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, HNO3, O3, and H2SO4, Geophys. Res. Lett. 24, 381–384.

    Google Scholar 

  • Scheff, P. A. and Valiozis, C., 1990: Characterization and source identification of respirable particulate matter in Athens, Greece, Atmospheric Environment 24A(1), 203–211.

    Google Scholar 

  • Smith, D. M., Keifer, J. R., Novicky, M., and Chughtai, A. R., 1989: An FT-IR study of the effect of simulated solar radiation and various particulates on the oxidation of SO2, Appl. Spectrosc. 43(1), 103–107.

    Google Scholar 

  • Stoeckli, F. and Kraehenbuehl, F., 1981: The enthalpies of immersion of active carbons, in relation to the Dubinin theory for the volume filling of micropores, Carbon 19(5), 353–356.

    Google Scholar 

  • Stoeckli, F. and Huguenin, D., 1992: Water adsorption in active carbon characterized by adsorption and immersion techniques. J. Chem. Soc., Faraday Trans. 88(5), 737–740.

    Google Scholar 

  • Stoeckli, F., Jakubov, T., and Lavanchy, A., 1994a: Water adsorption in active carbons described by the Dubinin-Astakhov equation, J. Chem. Soc., Faraday Trans. 90(5), 783–786.

    Google Scholar 

  • Stoeckli, F., Currit, L., Laederach, A., and Centeno, T. A., 1994b: Water adsorption in carbons described by the Dubinin-Astakhov and Dubinin-Serpinski equations, J. Chem. Soc., Faraday Trans. 90(24), 3689–3691.

    Google Scholar 

  • Stoeckli, F., 1998: Recent developments in Dubinin's theory, Carbon 36(4), 363–368.

    Google Scholar 

  • Tabor, K., Gutzwiller, L., and Rossi, M. J., 1994: Heterogeneous chemical kinetics of NO2 on amorphous carbon at ambient temperature, J. Phys. Chem. 98, 6172–6186.

    Google Scholar 

  • Watson, J. G. and Chow, J. C., 1988: The 1987-1988 Metro Denver Brown Cloud Study III, Univ. of Denver, Denver, CO 80208, U.S.A.

    Google Scholar 

  • Weingartner, E., Burtscher, H., and Baltensperger, U., 1997: Hygroscopic properties of carbon and diesel particles, Atmospheric Environment 31, 2311–2327.

    Google Scholar 

  • Yaaqub, R. R., Davies, T. D., Jickells, T. D., and Miller, J. M., 1991: Trace elements in daily collected aerosols at a site in southeast England, Atmospheric Environment 25A(5/6), 985–996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chughtai, A.R., Miller, N.J., Smith, D.M. et al. Carbonaceous Particle Hydration III. Journal of Atmospheric Chemistry 34, 259–279 (1999). https://doi.org/10.1023/A:1006221326060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006221326060

Navigation