Plant Molecular Biology

, Volume 40, Issue 4, pp 567–578 | Cite as

Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat

  • Tatsuya M. Ikeda
  • Michael W. Gray


Using PCR-based methods, we assembled two wheat cDNA sequences, wheat-G and wheat-C, that encode T3/T7 bacteriophage-like RNA polymerases (RNAPs) sharing 45% amino acid identity. In phylogenetic analyses using maximum likelihood, parsimony and distance methods, the predicted protein sequence of wheat-G (1005 amino acids, 113 kDa) clusters with sequences of previously assigned mitochondrial RNAPs from dicotyledonous plants (Arabidopsis thaliana, Chenopodium album); likewise, in such analyses, the wheat-C sequence (949 amino acids, 107 kDa) affiliates specifically with the Arabidopsis sequence that encodes a phage-like RNAP thought to function in chloroplasts. To confirm biochemically the assignment of the gene encoding the putative wheat mitochondrial RNAP, we isolated a ca. 100 kDa wheat mitochondrial protein that is enriched in fractions displaying specific in vitro transcription activity and that reacts with an antibody raised against a recombinant maize phage-type RNAP. Internal peptide sequence information obtained from the 100-kDa polypeptide revealed that it corresponds to the predicted wheat-G cDNA sequence, providing direct evidence that the wheat-G gene (which we propose to call RpoTm) encodes the wheat mitochondrial RNAP.

wheat mitochondria RNA polymerase transcription 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, J., Hasegawa, M. 1992. MOLPHY: Programs for Molecular Phylogenetics, I. PROTML: Maximum Likelihood Inference of Protein Phylogeny. Computer Science Monographs, Institute of Statistical Mathematics, Tokyo.Google Scholar
  2. Börner, T., Hedtke, B., Hess, W.R., Legen, J., Herrmann, R.G. and Weihe, A. In press. Phage-type RNA polymerases in higher plants. In: J. Argyroudi-Akoyunoglou (Ed.), The Chloroplast: From Molecular Biology to Biotechnology. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  3. Cermakian, N., Ikeda, T.M., Cedergren, R. and Gray, M.W. 1996. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucl. Acids Res. 24: 648-654.PubMedGoogle Scholar
  4. Cermakian, N., Ikeda, T.M., Miramontes, P., Lang, B.F., Gray, M.W. and Cedergren, R. 1997. On the evolution of the singlesubunit RNA polymerases. J Mol Evol 45: 671-681.PubMedGoogle Scholar
  5. Chang, C.-C., Sheen, J., Bligny, M., Niwa, Y., Lerbs-Mache, S. and Stern, D.B. In press. Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell.Google Scholar
  6. Chen, B., Kubelik, A.R., Mohr, S. and Breitenberger, C.A. 1996. Cloning and characterization of the Neurospora crassa cyt-5 gene. A nuclear-coded mitochondrial RNA polymerase with a polyglutamine repeat. J. Biol. Chem. 271: 6537-6544.PubMedGoogle Scholar
  7. Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1(4): 19-21.Google Scholar
  8. Denhardt, D.T. 1966. A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23: 641-646.PubMedGoogle Scholar
  9. Farrell Jr., R.E. 1993. RNA Methodologies: A Laboratory Guide for Isolation and Characterization. Academic Press, San Diego, CA.Google Scholar
  10. Felsenstein, J. 1993. Phylip (Phylogeny Inference Package) Version 3.5c. Department of Genetics, University ofWashington, Seattle, WA.Google Scholar
  11. Fisher, R.P., Clayton, D.A. 1985. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy-and light-strand promoters dissected and reconstituted in vitro. J. Biol. Chem. 260: 11330-11338.PubMedGoogle Scholar
  12. Fisher, R.P. and Clayton, D.A. 1988. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8: 3496-3509.PubMedGoogle Scholar
  13. Frohman, M.A., Dush, M.K. and Martin, G.R. 1988. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998-9002.PubMedGoogle Scholar
  14. Gillham, N.W. 1994. Organelle Genes and Genomes. Oxford University Press, New York.Google Scholar
  15. Goodall, G.J., Wiebauer, K. and Filipowicz, W. 1990. Analysis of pre-mRNA processing in transfected plant protoplasts. Meth. Enzymol. 181: 148-161.PubMedGoogle Scholar
  16. Gray, M.W. and Lang, B.F. 1998. Transcription in chloroplasts and mitochondria: a tale of two polymerases. Trends Microbiol. 6: 1-3.PubMedGoogle Scholar
  17. Hajdukiewicz, P.T.J., Allison, L.A. and Maliga, P. 1997. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 16: 4041-4048.PubMedGoogle Scholar
  18. Hanic-Joyce, P.J. and Gray, M.W. 1991. Accurate transcription of a plant mitochondrial gene in vitro. Mol. Cell. Biol. 11: 2035-2039.Google Scholar
  19. Hedtke, B., Börner, T., Weihe, A., 1997. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277: 809-811.PubMedGoogle Scholar
  20. Hess, W.R. and Börner, T. In press. Organellar RNA polymerases of higher plants. Int. Rev. Cytol.Google Scholar
  21. Jang, S.H. and Jaehning, J.A. The yeast mitochondrial RNA polymerase specificity factor, MTF1, is similar to bacterial _ factors. J. Biol. Chem. 266: 22671-22677.Google Scholar
  22. Kostyuk, D.A., Dragan, S.M., Lyakhov, D.L., Rechinsky, V.O., Tunitskaya, V.L., Chernov, B.K. and Kochetkov, S.N. 1995. Mutants of T7 RNA polymerase that are able to synthesize both RNA and DNA. FEBS Lett. 369: 165-168.PubMedGoogle Scholar
  23. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.PubMedGoogle Scholar
  24. Liere, K. and Maliga, P. 1999. In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J. 18: 249-257.PubMedGoogle Scholar
  25. Maliga, P. 1998. Two plastid polymerases of higher plants: an evolving story. Trends Plant Sci. 3: 4-6.Google Scholar
  26. Masters, B.S., Stohl, L.L. and Clayton, D.A. 1987. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51: 89-99.PubMedGoogle Scholar
  27. Nakai, K. and Kanehisa, M. 1992. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911.Google Scholar
  28. Osumi-Davis, P.A., de Aguilera, M.C., Woody, R.W. and Woody, A.-Y.M. 1992. Asp537, Asp812 are essential and Lys631, His811 are catalytically significant in bacteriophage T7 RNA polymerase activity. J. Mol. Biol. 226: 37-45.PubMedGoogle Scholar
  29. Parisi, M.A. and Clayton, D.A. 1991. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252: 965-969.PubMedGoogle Scholar
  30. Raskin, C.A., Diaz, G.A. and McAllister, W.T. 1993. T7 RNA polymerase mutants with altered promoter specificities. Proc. Natl. Acad. Sci. USA 90: 3147-3151.PubMedGoogle Scholar
  31. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  32. Sánchez, H. and Schuster, W. 1997. Cloning of three singlesubunit RNA polymerases from Arabidopsis thaliana. GenBank accession number AJ001037.Google Scholar
  33. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680.Google Scholar
  34. Tiranti, V., Savoia, A., Forti, F., D'Apolito, M.-F., Centra, M., Rocchi, M. and Zeviani, M. 1997. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum. Mol. Genet. 5: 615-625.Google Scholar
  35. von Heijne, G., Steppuhn, J. and Herrmann, R.G. 1989. Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535-545.PubMedGoogle Scholar
  36. Weihe, A., Hedtke, B. and Börner, T. 1997. Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerase from the higher plant Chenopodium album. Nucl. Acids Res. 25: 2319-2325.PubMedGoogle Scholar
  37. Weissensteiner, T. and Lanchbury J.S. 1996. Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques 21: 1102-1108.PubMedGoogle Scholar
  38. Whelan, J. and Glaser, E. 1997. Protein import into plant mitochondria. Plant Mol. Biol. 33: 771-789.PubMedGoogle Scholar
  39. Young, D.A., Allen, R.L., Harvey, A.J. and Lonsdale, D.M. 1998. Characterization of a gene encoding a single-subunit bacteriophage-type RNA polymerase from maize which is alternatively spliced. Mol. Gen. Genet. 260: 30-37.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Tatsuya M. Ikeda
    • 1
  • Michael W. Gray
    • 1
  1. 1.Department of BiochemistryDalhousie UniversityHalifaxCanada

Personalised recommendations