Skip to main content
Log in

Iodine Chemistry and its Role in Halogen Activation and Ozone Loss in the Marine Boundary Layer: A Model Study

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A detailed set of reactions treating the gas and aqueous phase chemistry of the most important iodine species in the marine boundary layer (MBL) has been added to a box model which describes Br and Cl chemistry in the MBL. While Br and Cl originate from seasalt, the I compounds are largely derived photochemically from several biogenic alkyl iodides, in particular CH2I2, CH2ClI, C2H5I, C3H7I, or CH3I which are released from the sea. Their photodissociation produces some inorganic iodine gases which can rapidly react in the gas and aqueous phase with other halogen compounds. Scavenging of the iodine species HI, HOI, INO2, and IONO2 by aerosol particles is not a permanent sink as assumed in previous modeling studies. Aqueous-phase chemical reactions can produce the compounds IBr, ICl, and I2, which will be released back into the gas phase due to their low solubility. Our study, although highly theoretical, suggests that almost all particulate iodine is in the chemical form of IO-3. Other aqueous-phase species are only temporary reservoirs and can be re-activated to yield gas phase iodine. Assuming release rates of the organic iodine compounds which yield atmospheric concentrations similar to some measurements, we calculate significant concentrations of reactive halogen gases. The addition of iodine chemistry to our reaction scheme has the effect of accelerating photochemical Br and Cl release from the seasalt. This causes an enhancement in ozone destruction rates in the MBL over that arising from the well established reactions O(1D) + H2O → 2OH, HO2 + O3 → OH + 2O2, and OH + O3 → HO2 + O2. The given reaction scheme accounts for the formation of particulate iodine which is preferably accumulated in the smaller sulfate aerosol particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alicke, B., Hebestreit, K., Platt, U., Carpenter, L., Sturges, W. T., 1998: Measurements of tropospheric iodine oxide in mid-latitudes, Paper presented at EGS XXIII General Assembly, Nice, France 20–24, 1998, Annales Geophysicae Supplement II 16, C716.

    Google Scholar 

  • Aranda, A., Le Bras, G., Laverdet, G., and Poulet, G., 1997: The BrO + CH3O2 reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett. 24, 2745–2748.

    Google Scholar 

  • Bauer, D., Ingham, T., Carl, S. A., Moortgat, G. K., and Crowley, J. N., 1998: Ultra-violett-visible absorption cross sections of gaseous HOI and its photolysis at 355 nm, J. Phys. Chem. A 102, 2857–2864.

    Google Scholar 

  • Bedjanian, Y., Le Bras, G., and Poulet, G., 1997: Kinetics and mechanism of the IO + ClO reaction, J. Phys. Chem. A 101, 4088–4096.

    Google Scholar 

  • Bloss, W. J., Rowley, D. M., Cox, R. A., and Jones, R. L., 1998: Kinetics and photochemical studies of iodine oxide chemistry, Paper presented at EGS XXIII General Assembly, Nice, France 20–24, 1998, Annales Geophysicae Supplement II 16, C717.

    Google Scholar 

  • Brühl, C. and Crutzen, P. J., 1989: On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation, Geophys. Res. Lett. 16, 703–706.

    Google Scholar 

  • Buxton, G. V., Kilner, C., and Sellers, R. M., 1992: Pulse radiolysis of HOI and IO in aqueous solution, formation and characterization of I(II), Proc. Tihany Symp. Radiat. Chem. 6, 155–159.

    Google Scholar 

  • Carlier, P., Fresnet, P., Pashalidis, S., Tsetsi, M., Martinet, A., Lescoat, V., Dupont, B., Chebbi, A., and Girard, R., 1991: Study of the oxidation of acid precursors in marine atmosphere: Organosulphus compounds and aldehydes, in Air Pollution Research Report 35, 167–180.

    Google Scholar 

  • Carpenter, L. J., Sturges, W. T., Liss, P. S., Penkett, S. A., Alicke, B., Hebestreit, K., and Platt, U., 1998: Observations of alkyl iodides and bromides at Mace Head: Links to macroalgal emissions an IO formation, Paper presented at EGS XXIII General Assembly, Nice, France 20–24, 1998, Annales Geophysicae Supplement II 16, C718.

    Google Scholar 

  • Chambers, R. M., Heard, A. C., and Wayne, R. P., 1992: Inorganic gas-phase reactions of the nitrate radical: I2 + NO3 and I + NO3, J. Phys. Chem. 96, 3321–3331.

    Google Scholar 

  • Chameides, W. L. and Davis, D. D., 1980: Iodine: Its possible role in tropospheric photochemistry, J. Geophys. Res. 85, 7383–7398.

    Google Scholar 

  • Chatfield, R. B. and Crutzen, P. J., 1990: Are there interactions of iodine and sulfur species in marine air photochemistry? J. Geophys. Res. 95D, 22319–22341.

    Google Scholar 

  • Chinake, C. R. and Simoyi, R. H., 1996: Kinetics and mechanism of the complex bromate-iodine reaction, J. Phys. Chem. 100, 1643–1656.

    Google Scholar 

  • Cicerone, R. J., 1981: Halogens in the atmosphere, Rev. Geophys. Space Phys. 19, 123–139.

    Google Scholar 

  • Citri, O. and Epstein, I. R., 1988: Mechanistic study of a coupled chemical oscillator: The bromatechlorite-iodide reaction, J. Phys. Chem. 92, 1865–1871.

    Google Scholar 

  • Class, T. and Ballschmiter, K., 1988: Chemistry of organic traces in air, J. Atmos. Chem. 6, 35–46.

    Google Scholar 

  • Davis, D., Crawford, J., Liu, S., McKeen, S., Bandy, A., Thornton, D., Rowland, F. S., and Blake, D., 1996: Potential impact of iodine on tropospheric levels of ozone and other critical oxidants, J. Geophys. Res. 101D, 2135–2147.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication 97-4, Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • Eigen, M. and Kustin, K., 1962: The kinetics of halogen hydrolysis, J. Am. Chem. Soc. 84, 1355–1361.

    Google Scholar 

  • Fenical, W., 1981: Natural halogenated organics, in E. K. Duutsma and R. Dawson (eds), Marine Organic Chemistry, Elsevier, New York, p. 375.

    Google Scholar 

  • Furrow, S., 1987: Reactions of iodine intermediates in iodate-hydrogen peroxide oscillators, J. Phys. Chem. 91, 2129–2135.

    Google Scholar 

  • Harwood, M. H., Burkholder, J. B., Hunter, M., Fox, R. W., and Ravishankara, A. R., 1997: Absorption cross sections and self-reaction kinetics of the IO radical, J. Phys. Chem. A 101, 853–863.

    Google Scholar 

  • Huie, R. E., Laszlo, B., Kurylo, M. J., Buben, S. N., Trofimova, E. M., Spassky, A. I., Messineva, N. A., Nevozhai, D., and Miziolek, A.W., 1995: The atmospheric chemistry of iodine monoxide, Halon Options Technical Working Conference, Albuquerque, NM, May 10.

  • Jenkin, M. E., 1992 (Nov.): The photochemistry of iodine-containing compounds in the marine boundary layer, Tech. Report AEA-EE-0405, United Kingdom Atomic Energy Authority, Harwell Laboratory, Oxon, OX11 0RA, U.K.

    Google Scholar 

  • Jenkin, M. E., Cox, R. A. and Candeland, D. E., 1985: Photochemical aspects of tropospheric iodine behaviour, J. Atmos. Chem. 2, 359–375.

    Google Scholar 

  • Laszlo, B., Kurylo, M. J., and Huie, R. E., 1995: Absorption cross sections, kinetics of formation, and self-reaction of the IO radical produced via the laser photolysis of N2O/I2/N2 mixtures, J. Phys. Chem. 99, 11701–11707.

    Google Scholar 

  • Lengyel, I., Li, J., Kustin, K., and Epstein, I. R., 1996: Rate constants for reactions between iodine-and chlorine-containing species: A detailed mechanism of the chlorine dioxide/chlorite reaction, J. Am. Chem. Soc. 118, 3708–3719.

    Google Scholar 

  • Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C., 1997: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. Chem. A 101, 4943–4949.

    Google Scholar 

  • Moyers, J. L. and Duce, R. A., 1972: Gaseous and particulate iodine in the atmosphere, J. Geophys. Res. 77, 5229–5238.

    Google Scholar 

  • Murphy, D. M., Thomson, D. S., and Middlebrook, A. M., 1997: Bromine, iodine and chlorine in single particles at Cape Grim, Geophys. Res. Lett. 24, 3197–3200.

    Google Scholar 

  • Nagy, J. C., Kumar, K., and Margerum, D. W., 1988: Non-metal redox kinetics: Oxidation of iodide by hypochlorous acid and by nitrogen trichloride measured by the pulsed-accelerated-flow method, Inorg. Chem. 27, 2773–2780.

    Google Scholar 

  • Olsen, R. J. and Epstein, I. R., 1991: Bifurcation analysis of chemical reaction mechanisms. I. Steady state bifurcation structure, J. Chem. Phys. 94, 3083–3095.

    Google Scholar 

  • Palmer, D. A., Ramette, R.W., and Mesmer, R. E., 1985: The hydrolysis of iodine: Equilibria at high temperatures, J. Nuclear Mat. 130, 280–286.

    Google Scholar 

  • Rahn, K. A., Borys, R. D., and Duce, R. A., 1976: Tropospheric halogen gases: Inorganic and organic components, Science 192, 549–550.

    Google Scholar 

  • Rancher, J. and Kritz, M. A., 1980: Diurnal fluctuations of Br and I in the tropical marine atmosphere, J. Geophys. Res. 85C, 5581–5587.

    Google Scholar 

  • Rasmussen, R. A., Khalil, M. A., Gunawarda, R., and Hoydt, S. D., 1982: Atmospheric methyl iodide (CH3I), J. Geophys. Res. 87, 3086–3090.

    Google Scholar 

  • Reifenhäuser, W. and Heumann, K. G., 1992: Determination of methyl iodide in the antarctic atmosphere and the south polar sea, Atmos. Environ. 26A, 2905–2912.

    Google Scholar 

  • Roehl, C. M., Burkholder, J. B., Moortgat, G. K., Ravishankara, A. R., and Crutzen, P. J., 1997: The temperature dependence of the uv absorption cross sections and the atmospheric implications of several alkyl iodides, J. Geophys. Res. 102D, 12819–12829.

    Google Scholar 

  • Sander, R. and Crutzen, P. J., 1996: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res. 101D, 9121–9138.

    Google Scholar 

  • Schall, C. and Heumann, K. G., 1993: GC determination of volatile organoiodine and organobromine compounds in arctic seawater and air samples, Fres. J. Anal. Chem. 346, 717–722.

    Google Scholar 

  • Seery, D. J. and Britton, D., 1964: The continuous absorption spectra of chlorine, bromine, bromine chloride, iodine chloride, and iodine bromide, J. Phys. Chem. 68, 2263–2266.

    Google Scholar 

  • Singh, H. B., Salas, L. J., and Stiles, R. E., 1983: Methyl halides in and over the eastern pacific (40° N–32° S), J. Geophys. Res. 88, 3684–3690.

    Google Scholar 

  • Solomon, S., Garcia, R. R., and Ravishankara, A. R., 1994a: On the role of iodine in ozone depletion, J. Geophys. Res. 99D, 20491–20499.

    Google Scholar 

  • Solomon, S., Burkholder, J. B., Ravishankara, A. R., Garcia, R. R., 1994b: Ozone depletion and global warming potential of CF3I, J. Geophys. Res. 99D, 20929–20935.

    Google Scholar 

  • Spietz, P., Himmelmann, S., Gross, U., Orphal, J., and Burrows, J. P., 1998: Study of iodine oxides and iodine chemistry using flash photolysis and time resolved absorption spectroscopy, Paper presented at EGS XXIII General Assembly, Nice, France 20–24, 1998, Annales Geophysicae Supplement II 16, C722.

    Google Scholar 

  • Tellinghuisen, J., 1973: Resolution of the visible-infrared absorption spectrum of I2 into three contributing transitions, J. Chem. Phys. 58, 2821–2834.

    Google Scholar 

  • Troy, R. C. and Margerum, D. W., 1991: Non-metal redox kinetics: Hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate, Inorg. Chem. 30, 3538–3543.

    Google Scholar 

  • Troy, R. C., Kelley, M. D., Nagy, J. C., and Margerum, D.W., 1991: Non-metal redoxkinetics: Iodine monobromide reaction with iodide ion and the hydrolysis of IBr, Inorg. Chem. 30, 4838–4845.

    Google Scholar 

  • Truesdale, V., 1998: Kinetics of disproportionation of hypoiodous acid at high pH, with extrapolation to rainwater, J. Chem. Soc. Faraday Trans., in press.

  • Vogt, R., Crutzen, P. J., and Sander, R., 1996: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature 383, 327–330.

    Google Scholar 

  • Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., 1982: The NBS tables of chemical thermodynamic properties; selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data 11, Suppl. 2.

    Google Scholar 

  • Wang, Y. L., Nagy, J. C., and Margerum, D.W., 1989: Kinetics of hydrolysis of iodine monochloride measured by the pulsed-accelerated-flow method, J. Am. Chem. Soc. 111, 7838–7844.

    Google Scholar 

  • Wimschneider, A. and Heumann, K. G., 1995: Iodine speciation in size fractionated atmospheric particles by isotope dilution mass spectrometry, Fresenius J. Anal. Chem. 353, 191–196.

    Google Scholar 

  • Yoshida, S. and Muramatsu, Y., 1995: Determination of organic, inorganic and particulate iodine in the coastal atmosphere of Japan, J. Radioanalytical and Nucl. Chem. 196, 295–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, R., Sander, R., von Glasow, R. et al. Iodine Chemistry and its Role in Halogen Activation and Ozone Loss in the Marine Boundary Layer: A Model Study. Journal of Atmospheric Chemistry 32, 375–395 (1999). https://doi.org/10.1023/A:1006179901037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006179901037

Navigation