Skip to main content
Log in

A strong constitutive positive element is essential for the ammonium-regulated expression of a soybean gene encoding cytosolic glutamine synthetase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In order to identify important promoter elements controlling the ammonium-regulated expression of the soybean gene GS15 encoding cytosolic glutamine synthetase, a series of 5′ promoter deletions were fused to the GUS reporter gene. To allow the detection of positive and negative regulatory elements, a series of 3′ deletions were fused to a −90 CaMV 35S promoter fragment placed upstream of the GUS gene. Both types of construct were introduced into Lotus corniculatus plants and soybean roots via Agrobacterium rhizogenes-mediated transformation. Both spectrophotometric enzymatic analysis and histochemical localization of GUS activity in roots, root nodules and shoots of transgenic plants revealed that a strong constitutive positive element (SCPE) of 400 bp, located in the promoter distal region is indispensable for the ammonium- regulated expression of GS15. Interestingly, this SCPE was able to direct constitutive expression in both a legume and non- legume background to a level similar to that driven by the CaMV 35S full-length promoter. In addition, results showed that separate proximal elements, located in the first 727 bp relative to the transcription start site, are essential for root- and root nodule-specific expression. This proximal region contains an AAAGAT and two TATTTAT consensus sequences characteristic of nodulin or nodule-enhanced gene promoters. A putative silencer region containing the same TATTTAT consensus sequence was identified between the SCPE and the organ-specific elements. The presence of positive, negative and organ-specific elements together with the three TATTTAT consensus sequences within the promoter strongly suggest that these multiple promoter fragments act in a cooperative manner, depending on the spatial conformation of the DNA for trans-acting factor accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson CR, Llewellyn DJ, Peacock WJ, Dennis ES: Cellspecific expression of the promoters of two non-legume hemoglobin genes in a transgenic legume, Lotus corniculatus. Plant Physiol 113: 45–57(1997).

    PubMed  Google Scholar 

  2. Back E, Dunne W, Schneiderbaier A, de Framond A, Rastogi R, Rothstein S: Isolation of the spinach nitrite reductase promoter which confers nitrate inducibility on GUS gene expression in transgenic tobacco. Plant Mol Biol 17: 9–18 (1991).

    PubMed  Google Scholar 

  3. Benfey PN, Chua NH: Regulated genes in transgenic plants. Science 244: 174–181(1989).

    Google Scholar 

  4. Benfey PN, Ren L, Chua NH: The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8: 2195–2202(1989).

    Google Scholar 

  5. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254(1976).

    Article  PubMed  Google Scholar 

  6. Bustos MM, Guiltinan MJ, Jordano J, Begum D, Kalkan FA, Hall TC: Regulation of β-glucuronidase expression in transgenic tobacco plants by an A/T rich, cis-acting sequence found upstream of a french bean β-phaseolin gene. Plant Cell 1: 839–853(1989).

    Article  PubMed  Google Scholar 

  7. Calza R, Huttner E, Vincentz M, Rouzé P, Galangai F, Vaicheret H, Cherel I, Meyer C, Caboche M: Cloning DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductase of higher plants. Mol Gen Genet 209: 552–562(1987).

    Article  Google Scholar 

  8. Carrayol E, Tercé-Laforgue T, Desbrosses G, Pruvot-Maschio G, Poirier S, Ratet P, Hirel B: Ammonia regulated expression of a soybean gene encoding cytosolic glutamine synthetase is not conserved in two heterologous plant systems. Plant Sci 125: 75–85(1997).

    Google Scholar 

  9. Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR: Both positive and negative elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J 7: 1929–1936(1988).

    PubMed  Google Scholar 

  10. Cheng CL, Acedo GN, Cristinsin M, Conkling MA: Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci USA 89: 1861–1864 (1992).

    PubMed  Google Scholar 

  11. Cheon C, Lee NG, Siddique ABM, Bal AK, Verma DPS: Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12: 4125–4135(1993).

    PubMed  Google Scholar 

  12. Coï c Y, Lesaint C: Comment assurer une bonne nutrition en eai et en ions minéraix en horticulture. Hort Franç 8: 11–14 (1971).

    Google Scholar 

  13. Coï c Y, Tendille J, Lesaint C: La nutrition azotée du tournesol (Helianthus annuus): Action sur le rendement et la composition biochimique de la graine. Agrochemica 16: 254–263 (1972).

    Google Scholar 

  14. Crawford NM, Campbell WH, Davis RW: Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci USA 83: 8073–8076(1986).

    Google Scholar 

  15. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395(1984).

    PubMed  Google Scholar 

  16. Ditta G, Stanfiel S, Corbin D, Helinski DR: Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351(1980).

    PubMed  Google Scholar 

  17. Espin G, Moreno S, Guzman J: Molecular genetics of the glutamine synthetases in Rhizobium species. Crit Rev Microbiol 20: 117–123(1994).

    PubMed  Google Scholar 

  18. Fang RX, Nagy F, Sivasubramaniam S, Chua NH:Multiple cis-regulatory elements for maximal expression of the cailiflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1: 147–150(1989).

    Google Scholar 

  19. Forchhammer K, Tandeai de Marsac N: Functional analysis of the phosphoprotein PII (glnβ gene product) in the Cyanobacterium Synechococcus sp. strain PCC 7942. J Bact 177: 2033–2040(1995).

    PubMed  Google Scholar 

  20. Forde BG: A/T-rich elements (ATREs) in the promoter regions of nodulin and other higher plant genes: a novel class of cis-acting regulatory element? In: Nover L (ed) Plant Promoters and Transcription Factors, pp. 87–103. Springer-Verlag, Berlin/Heidelberg (1994).

    Google Scholar 

  21. Forde BG, Day HM, Turton JF, Wen-jun S, Cullimore JV, Oliver JE: Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell 1: 391–401(1989).

    Article  PubMed  Google Scholar 

  22. Forde BG, Freeman J, Oliver JE, Pineda M: Nuclear factors interact with conserved A/T-rich elements upstream of a nodule-enhanced glutamine synthetase gene from french bean. Plant Cell 2: 925–939(1990).

    Article  PubMed  Google Scholar 

  23. Gantt JS, Thompson MD: Plant cytosolic ribosomal protein S11 and chloroplast protein CS17. J Biol Chem 265: 2763–2767 2767(1990).

    Google Scholar 

  24. Hirel B, Bouet C, King B, Layzell D, Jacobs F, Verma DPS: Glutamine synthetase genes are regulated by ammonia provided externally or by symbiotic nitrogen fixation. EMBO J 6: 1167–1171(1987).

    Google Scholar 

  25. Hoff T, Truong H-N, Caboche M: The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ 17: 489–506(1994).

    Google Scholar 

  26. Horsh RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N: Inheritance of functional foreign genes in plants. Science 223: 496–498(1984).

    Google Scholar 

  27. Hwang CF, Lin Y, D'souza T, Cheng CL: Sequences necessary for nitrate-dependent transcription of Arabidopsis nitrate reductase genes. Plant Physiol 113: 853–862(1997).

    PubMed  Google Scholar 

  28. Jang JC, Leon P, Zhou L, Sheen J: Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19(1997).

    Article  PubMed  Google Scholar 

  29. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907(1987).

    PubMed  Google Scholar 

  30. Koch KE:Molecular crosstalk and the regulation of C-and Nresponsive genes. In Foyer CH, Quick WP (eds) A Molecular Approach to Primary Metabolism in Higher Plants, pp. 105–124. Taylor and Francis, London (1997).

    Google Scholar 

  31. Kosugi S, Ohashi Y, Nakajima K, Arai Y: An improved assay for _-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci 70: 133–140(1990).

    Article  Google Scholar 

  32. Kozaki A, Sakamoto A, Takeba G: The promoter of the gene for plastidic glutamine synthetase (GS2) from rice is developmentally regulated and exhibits substrate-induced expression in transgenic tobacco plants. Plant Cell Physiol 33: 233–238 (1992).

    Google Scholar 

  33. Kozaki A, Sakamoto A, Tanaka K, Takeba G: The promoter of the gene for glutamine synthetase from rice shows organspecificity and substrate-induced expression in transgenic tobacco plants. Plant Cell Physiol 32: 353–358(1991).

    Google Scholar 

  34. Kronenberger J, Lepingle A, Caboche M, Vaicheret H: Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet 236: 203–208(1993).

    PubMed  Google Scholar 

  35. Lam HM, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh MH, Coruzzi G: Use of Arabidopsis mutants and genes to study amide amino-acid biosynthesis. Plant Cell 7: 887–898(1995).

    PubMed  Google Scholar 

  36. Macknight RC, Reynolds PHS, Farnden KJF: Analysis of the lupin Nodulin-45 promoter: conserved regulatory sequences are important for promoter activity. Plant Mol Biol 27: 457–465 (1995).

    PubMed  Google Scholar 

  37. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).

    Google Scholar 

  38. Marsolier MC, Carrayol E, Hirel B: Multiple functions of promoter sequences involved in organ-specific expression and ammonia regulation of a cytosolic glutamine synthetase gene in transgenic Lotus corniculatus. Plant J 3: 405–414(1993).

    Google Scholar 

  39. Marzluf GA: Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61: 17–32(1997).

    PubMed  Google Scholar 

  40. Miao GH, Hirel B, Marsolier MC, Ridge RW, Verma DPS: Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell 3: 11–22(1991).

    PubMed  Google Scholar 

  41. Müller M, Knudsen S: The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J 4: 343–355 (1993).

    Article  PubMed  Google Scholar 

  42. Murashige J, Skoog F: A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 115: 473–497(1962).

    Google Scholar 

  43. Petit A, Stougaard J, Kühle A, Marcker KA, Tempé J: Transformation and regeneration of the legume Lotus corniculatus: a system for molecular studies of symbiotic nitrogen fixation. Mol Gen Genet 207: 245–250(1987).

    Article  Google Scholar 

  44. Quesada A, Krapp A, Trueman LJ, Daniel-Vedèle F, Fernandez E, Forde BG, Caboche M: PCR identification of a Nicotiana plumbaginifolia cDNA homologue to the high affinity nitrate transporters of the crnA family. Plant Mol Biol 34: 265–274(1997).

    PubMed  Google Scholar 

  45. Sandal NN, Bojsen K, Marcker KA: A small family of nodule specific genes from soybean. Nucl Acids Res 15: 1507–1519 (1987).

    PubMed  Google Scholar 

  46. Scheible WR, Gonzalez-Fontes A, Laierer M, Müller-Röber B, Caboche M, Stitt M: Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9: 783–798(1997).

    Article  PubMed  Google Scholar 

  47. She Q, Sandal NN, Stougaard J, Marcker KA: Comparative sequence analysis of cis elements present in Glycine max L. leghemoglobin lba and lbc3 genes. Plant Mol Biol 22: 931–935 (1993).

    Article  PubMed  Google Scholar 

  48. Sheen J: Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038(1990).

    Article  PubMed  Google Scholar 

  49. Shen W, Williamson MS, Forde BG: Functional analysis of the promoter region of a nodule-enhanced glutamine synthetase gene from Phaseolus vulgaris L. Plant Mol Biol 19: 837–846 (1992).

    Google Scholar 

  50. Stougaard J, Jorgenson JE, Christensen T, Kühle A, Marcker KA:Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc3 and N23 gene promoters. Mol Gen Genet 220: 353–360(1990).

    Google Scholar 

  51. Sugiharto B, Sugiyama T: Effects of nitrate and ammonium on gene expression of phosphoenolpyruvate carboxylase and nitrogen metabolism in maize leaf tissue during recovery from nitrogen stress. Plant Physiol 98: 1403–1408(1992).

    Google Scholar 

  52. Sukanya R, Li M, Snustard PD: Root-and shoot-specific response of individual glutamine synthetase genes of maize to nitrate and ammonium. Plant Mol Biol 26: 1935–1946(1994).

    PubMed  Google Scholar 

  53. Szczyglowski K, Szabados L, Fujimoto S, Silver D, de Bruijn FJ: Site-specific mutagenesis of the nodule-infected cell expression (NICE) element and the AT-rich ATRE-BS2 of the Sesbania rostrata leghemoglobin glb3 promoter. Plant Cell 6: 317–332(1994).

    Article  PubMed  Google Scholar 

  54. Thykjæ r T, Danielsen D, She Q, Stougaard J: Organization and expression of genes in the genomic region surrounding the glutamine synthetase gene Gln1 from Lotus japonicus. Mol Gen Genet 255: 628–636(1997).

    PubMed  Google Scholar 

  55. Tjaden G, Coruzzi M: A novel AT-rich DNA binding protein that combines an HMG I-like DNA binding domain with a putative transcription domain. Plant Cell 6: 107–118(1994).

    Article  PubMed  Google Scholar 

  56. Tjaden G, Edwards JW, Coruzzi GM: cis elements and transacting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiol 108: 1109–1117(1995).

    PubMed  Google Scholar 

  57. Tumer NE, Robinson SJ, Haselkorn R: Different promoters for the Anabaena glutamine synthetase gene during growth using molecular or fixed nitrogen. Nature 306: 337–342(1983).

    Google Scholar 

  58. Watson AT, Cullimore JV: Characterisation of the expression of the glutamine synthetase gln-α gene of the Phaseolus vulgaris using promoter-reporter gene fusions in transgenic plants. Plant Sci 120: 139–151(1996).

    Google Scholar 

  59. Woods R, Reid SH: Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol Rev 11: 273–284(1993).

    PubMed  Google Scholar 

  60. Wray JL: Molecular biology, genetics and regulation of nitrite reduction in higher plants. Physiol Plant 89: 607–612(1993).

    Google Scholar 

  61. Wray LV, Ferson AE, Rohrer K, Fisher SH: TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci USA 93: 8841–8845(1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tercé-laforgue, T., Carrayol, E., Cren, M. et al. A strong constitutive positive element is essential for the ammonium-regulated expression of a soybean gene encoding cytosolic glutamine synthetase. Plant Mol Biol 39, 551–564 (1999). https://doi.org/10.1023/A:1006169018296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006169018296

Navigation