Skip to main content
Log in

Metalloproteinases and tissue inhibitors of metalloproteinases

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Because the proteolytic degradation of extracellular matrix is required for invasion and metastasis, it would appear that the important family of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) might be prognostic indicators of the invasive potential of a breast tumor. Nevertheless, there are few data demonstrating an independent prognostic value of any individual MMPs or TIMPs in primary breast cancer patients. It is possible, however, that the balance among levels of certain MMPs and their inhibitors will be more informative, since MMPs are clearly involved in paracrine tumor-stromal interactions and are associated with angiogenesis, which does appear to be prognostic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature (Lond.) 248:67-68, 1980

    Google Scholar 

  2. Stetler-Stevenson WG, Liotta LA, Brown PD: Role of type-IV collagenases in human breast cancer. Dickson RB, Lippman ME (eds) Genes, Oncogenes, and Hormones: Advances in Cellular and Molecular Biology of Breast Cancer. Kluwer Academic Publishers, 1991, pp21-41

  3. Liotta LA, Thorgeirsson UP, Garbisa S: Role of collagenases in tumor cell invasion. Cancer Metastasis Rev 1:277-288, 1982

    Google Scholar 

  4. Liotta LA: Tumor invasion and metastasis — Role of the extracellular matrix. Cancer Res 46:1-7, 1986

    Google Scholar 

  5. Tryggvason K, Hoyhtya M, Pyke C: Type IV collagenases in invasive tumors. Breast Cancer Res Treat 24:209-218, 1993

    Google Scholar 

  6. Nakajima M, Welch DR, Wynn DM, Tsuruo T, Nicolson GL: Serum and plasma Mr 92,000 progelatinase levels correlate with spontaneous metastasis of rat 13762 NF mammary adenocarcinoma. Cancer Res 53:5802-5807, 1993

    Google Scholar 

  7. Folkman J: Angiogenesis in cancer, vascular, rheumatoid, and other diseases. Nature Med 1:27-31, 1995

    Google Scholar 

  8. Sava G, Capozzi I, Bergamo A, Gagliardi R, Cocchietto M, Masiero L, Onisto M, Alessio E, Mestroni G, Garbisa S: Down-regulation of tumour gelatinase/inhibitor balance and preservation of tumour endothelium by an anti-metastatic ruthenium complex. Int J Cancer 68:60-66, 1996

    Google Scholar 

  9. Plate KH, Breier G, Risau W: Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol 4:207-218, 1994

    Google Scholar 

  10. Azzam HS, Arand G, Lippman ME, Thompson EW: Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst 85:1758-1764, 1993

    Google Scholar 

  11. Basset P, Wolf C, Rouyer N, Bellocq J-P, Rio M-C, Chambon P: Stromelysin-3 in stromal tissue as a control factor in breast cancer behavior. Cancer 74:1045-1049, 1994

    Google Scholar 

  12. Yamagata S, Yoshii Y, Suh JG, Tanaka R, Shimizu S: Occurrence of an active form of gelatinase in human gastric and colorectal carcinoma tissues. Cancer Letters 59:51-55, 1991

    Google Scholar 

  13. Brown PD, Bloxidge RE, Stuart NSA, Gatter KC, Carmichael J: Association between expression of activated 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma. J Natl Cancer Inst 85:574-578, 1993

    Google Scholar 

  14. Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA: Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and-9. Biochemistry 33:14109-14114, 1994

    Google Scholar 

  15. Freije JMP, Diez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J, Lopez-Otin C: Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 269:16766-16773, 1994

    Google Scholar 

  16. Wole C, Rouyer N, Lutz Y, Adida C, Loriot M, Bellocq J-P, Chambon P, Basset P: Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90:1843-1847, 1993

    Google Scholar 

  17. Knauper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanson H, Hembry RM, Murphy G: Cellular mechanisms for human procollagenase-3 (MMP-13) activation. J Biol Chem 271:17124-17131, 1996

    Google Scholar 

  18. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P: A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699-704, 1990

    Google Scholar 

  19. Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger A, He C, Bauer EA, Goldberg GI: H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263:6579-6587, 1988

    Google Scholar 

  20. Wilson C, Heppner KJ, Labosky P, Hogan BLM, Matrisian LM: Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci 94:1402-1407, 1997

    Google Scholar 

  21. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61-65, 1994

    Google Scholar 

  22. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI: Mechanism of cell surface activation of 72-kDa type IV collagenase. J Biol Chem 270:5331-5338, 1995

    Google Scholar 

  23. Kinoshita T, Sato H, Takino T, Itoh M, Akizawa T, Seiki M: Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res 56:2535-2538, 1996

    Google Scholar 

  24. Ohtani H, Motohashi H, Sato H, Seiki M, Nagura H: Dual over-expression pattern of membrane-type metalloproteinase-1 cancer and stromal cells in human gastrointestinal carcinoma revealed by in situ hybridization and immunoelectron microscopy. Int J Cancer 68:565-570, 1996

    Google Scholar 

  25. Nomura H, Sato H, Seiki M, Mai M, Okada Y: Expression of membrane-type matrix metalloproteinase in human gastric carcinomas. Cancer Res 55:3263-3266, 1995

    Google Scholar 

  26. Tokuraku M, Sato H, Murakami S, Okada Y, Watanabe Y, Seiki M: Activation of the precursor of gelatinase A/72 kDa type IV collagenase/MMP-2 in lung carcinomas correlates with the expression of membrane-type matrix metalloproteinase (MT-MMP) and with lymph node metastasis. Int J Cancer 64:355-359, 1995

    Google Scholar 

  27. Tanaka M, Sato H, Takino T, Iwata K, Inoue M, Seiki M: Isolation of a mouse MT2-MMP gene from a lung cDNA library and identification of its product. FEBS Letters 402:219-222, 1997

    Google Scholar 

  28. Takino T, Sato H, Shinagawa A, Seiki M: Identification of the second membrane-type matrix metalloproteinase (MT-MMP2) gene from a human placenta cDNA library. J Biol Chem 270:23013-23020, 1995

    Google Scholar 

  29. Puente XS, Pendas AM, Llano E, Velasco G, Lopez-Otin C: Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res 56:944-949, 1996

    Google Scholar 

  30. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y: Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446-2451, 1997

    Google Scholar 

  31. Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M: Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Letters 393:101-104, 1996

    Google Scholar 

  32. Pei D, Weiss SJ: Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375:244-247, 1995

    Google Scholar 

  33. Okada A, Bellocq J-P, Rouyer N, Chenard M-P, Rio M-C, Chambon P, Basset P: Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 92:2730-2734, 1995

    Google Scholar 

  34. Polette M, Nawrocki B, Gilles C, Sato H, Seiki M, Tournier J-M, Birembaut P: MT-MMP expression and localisation in human lung and breast cancers. Virchows Arch 428:29-35, 1996

    Google Scholar 

  35. Ueno H, Nakamura H, Inoue M, Imai K, Noguchi M, Sato H, Seiki M, Okada Y: Expression and tissue localization of membrane types 1,2 and 3 matrix metalloproteinases in human invasive breast carcinoma. Cancer Res 57:2055-2060, 1997

    Google Scholar 

  36. Schultz RM, Silberman S, Persky B, Bajkowski AS, Carmichael DF: Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization B16-F10 melanoma cells. Cancer Res 48:5539-5545, 1988

    Google Scholar 

  37. Khokha R, Waterhouse P, Yagel S, Lala PK, Overall CM, Norton G, Denhardt DT: Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science (Washington DC) 243:947-950, 1989

    Google Scholar 

  38. DeClerck YA, Yean TD, Chan D, Shimada H, Langley KE: Inhibition of tumor invasion of smooth muscle cell layers by recombinant human metalloproteinase inhibitor. Cancer Res 51:2151-2157, 1991

    Google Scholar 

  39. Macky AR, Ballin M, Pelina MD, Farina AR, Nason AM, Hartzler JL, Thorgeirsson UP: Effect of phorbol ester and cytokines on matrix metalloproteinase and tissue inhibitor of metalloproteinase expression in tumor and normal cell lines. Invasion Metastasis 12:168-184, 1992

    Google Scholar 

  40. Apte S, Olsen BR, Murphy G: The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem 270:14313-14318, 1995

    Google Scholar 

  41. Uria JA, Ferrando AA, Velasco G, Freije JMP, Lopez-Otin C: Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. Cancer Res 54:2091-2094, 1994

    Google Scholar 

  42. Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE: Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 271:30375-30380, 1996

    Google Scholar 

  43. Abbas Abidi SM, Howard EW, Dmytryk JJ, Pento JT: Differential influence of antiestrogens on the in vitro release of gelatinases (type IV collagenases) by invasive and non-invasive breast cancer cells. Clin Exp Metast 15:432-439, 1997

    Google Scholar 

  44. Ree AH, Maelandsmo GM, Fodstad O: Regulation of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in MCF-7 cells: Comparison with regulatory mechanisms of pS2 expression. Clin Exp Metast 14:381-388, 1996

    Google Scholar 

  45. Declerck YA, Perez N, Shimada H, Bonne TC, Langley KE, Taylor SM: Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 52:701-708, 1992

    Google Scholar 

  46. Wang M, Liu YE, Greene J, Sheng S, Fuchs A, Rosen EM, Shi YE: Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene 14:2767-2774, 1997

    Google Scholar 

  47. Sato H, Takono T, Konoshita T, Imai K, Okada Y, Stetler-Stevenson WG, Seiki M: Cell surface binding and activation of gelatinase A induced by expression of membrane-type-1-matrix metalloproteinase (MT1-MMP). FEBS Lett 385:238-240, 1996

    Google Scholar 

  48. Hahnel E, Harvey JM, Joyce R, Robbins PD, Sterrett GF, Hahnel R: Stromelysin-3 expression in breast cancer biopsies: Clinico-pathological correlations. Int J Cancer 55:771-774, 1993

    Google Scholar 

  49. Polette M, Clavel C, Cockett M, de Bentzmann SG, Murphy G, Birembaut P: Detection and localization of mRNAs encoding matrix metalloproteinases and their tissue inhibitor in human breast pathology. Invasion Metast 13:31-37, 1993

    Google Scholar 

  50. Kossakowska AE, Huchcroft SA, Urbanski SJ, Edwards DR: Comparative analysis of the expression patterns of metalloproteinases and their inhibitors in breast neoplasia, pulmonary carcinomas and malignant non-Hodgkin's lymphomas in humans. Br J Cancer 73:1401-1408, 1996

    Google Scholar 

  51. Davies B, Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR: Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 67:1126-1131, 1993

    Google Scholar 

  52. Onisto M, Riccio MP, Scannapieco P, Caenazzo C, Griggio L, Spina M, Stetler-Stevenson WG, Garbisa S: Gelatinase A/ TIMP-2 imbalance in lymph-node-positive breast carcinomas, as measured by RT-PCR. Int J Cancer 63:621-626, 1995

    Google Scholar 

  53. Duffy MJ, Blaser J, Duggan C, McDermott E, O'Higgins N, Fennelly JJ, Tschesche H: Assay of matrix metalloproteases types 8 and 9 by ELISA in human breast cancer. Br J Cancer 71:1025-1028, 1995

    Google Scholar 

  54. Johnatty R, Taub D, Reeder S, Turcovski-Corrales SM, Cottam DW, Stephenson TJ, Rees RC: Cytokine and chemokine regulation of pro MMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol 158:2327-2333, 1997

    Google Scholar 

  55. Himelstein BP, Muschel RJ: Induction of matrix metalloproteinase 9 expression in breast carcinoma cells by a soluble factor from fibroblasts. Clin Exp Metast 14:197-208, 1996

    Google Scholar 

  56. Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH: Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149:273-282, 1996

    Google Scholar 

  57. Polette M, Clavel C, Cockett M, de Bentzmann SG, Murphy G, Birembaut P: Detection and localization of mRNAs encoding matrix metalloproteinases and their tissue inhibitor in human breast pathology. Invasion Metast 13:31-37, 1993

    Google Scholar 

  58. Poulsom R, Hanby AM, Pignatelli M, Jeffery RE, Longcroft JM, Rogers L, Stamp GWH: Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J Clin Pathol 46:429-436, 1993

    Google Scholar 

  59. Polete M, Gilbert N, Stas I, Nawrocki B, Nobel A, Remacle A, Stetler-Stevenson WG, Birembaut P, Foidart J-M: Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Archiv 424:641-645, 1994

    Google Scholar 

  60. Engel G, Heselmeyer K, Auer G, Backdahl M, Eriksson E, Linder S: Correlation between stromelysin-3 mRNA level and outcome of human breast cancer. Int J Cancer 58:830-835, 1994

    Google Scholar 

  61. Byrne JA, Tomasetto C, Rouyer N, Bellocq JP, Rio MC, Basset P: The tissue inhibitor of metalloproteinases-3 gene in breast carcinoma: Identification of multiple polyadenylation sites and a stromal pattern of expression. Mol Med 1:418-427, 1995

    Google Scholar 

  62. Lindsay CK, Thorgeirsson UP, Tsuda H, Hirohashi S: Expression of tissue inhibitor of metalloproteinase-1 and type IV collagenase/gelatinase messenger RNAs in human breast cancer. Human Pathol 28:359-366, 1997

    Google Scholar 

  63. Monteagudo C, Merino MJ, San-Juan J, Liotta LA, Stetler-Stevenson WG: Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 136:585-592, 1990

    Google Scholar 

  64. Clavel C, Polette M, Doco M, Binninger I, Birembaut P: Immunolocalization of matrix metalloproteinases and their tissue inhibitor in human mammary pathology. Bull Cancer 79:261-270, 1992

    Google Scholar 

  65. Hoyhtya M, Fridman R, Komarek D, Porter-Jordan K, Stetler-Stevenson WG, Liotta LA, Liang C-M: Immunohistochemical localization of matrix metalloproteinase 2 and its specific inhibitor TIMP-2 in neoplastic tissues with monoclonal antibodies. Int J Cancer 56:500-505, 1994

    Google Scholar 

  66. Iwata H, Kobayashi S, Iwase H, Masaoka A, Fujimoto N, Okada Y: Production of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human breast carcinomas. Jpn J Cancer Res 87:602-611, 1996

    Google Scholar 

  67. Foekens JA, Schmitt M, van Putten WLJ, Peters HA, Kramer MD, Janicke F, Klijn JGM: Plasminogen activator inhibitor-1 and prognosis in primary breast cancer. J Clin Oncol 12:1648-1658, 1994

    Google Scholar 

  68. Grondahl-Hansen J, Christensen IJ, Briand P, Pappot H, Mouridsen HT, Blichert-Toft M, Dano K, Brunner N: Plasminogen activator inhibitor type 1 in cytosolic tumor extracts predicts prognosis in low-risk breast cancer patients. Clin Cancer Res 3:233-239, 1997

    Google Scholar 

  69. Grignon DJ, Sakr W, Toth M, Ravery V, Angulo J, Shamsa F, Pontes JE, Crissman JC, Fridman R: High level of tissue inhibitor of metalloproteinase-2 (TIMP-2) expression are associated with poor outcome in invasive bladder cancer. Cancer Res 56:1654-1659, 1996

    Google Scholar 

  70. Mori M, Mimori K, Shiraishi T, Fujie K, Baba K, Kusumoto H, Haraguchi M, Ueno H, Akiyoshi T: Analysis of MT1-MMP and MMP2 expression in human gastric cancers. Int J Cancer 74:316-321, 1997

    Google Scholar 

  71. Gasparini G, Harris AL: Clinical importance of the determination of tumor angiogenesis in breast carcinoma: Much more than a new prognostic tool. J Clin Oncol 13:765-782, 1995

    Google Scholar 

  72. Johnson MD, Kim HC, Chesler L, Tsao-Wu G, Bouck N, Polverini PJ: Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 160:194-202, 1994

    Google Scholar 

  73. Murphy AN, Unsworth EJ, Stetler-Stevenson WG: Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol 157:351-358, 1993

    Google Scholar 

  74. Toi M, Taniguchi T, Yamamoto Y, Kurizaki T, Suzuki H, Tominaga T: Clinical significance of the determination of angiogenic factors. Eur J Cancer 32A:2513-2519, 1996

    Google Scholar 

  75. Eda H, Fujimoto K, Watanabe S, Ura M, Hino A, Tanaka Y, Wada K, Ishitsuka H: Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 5′-deoxy-5-fluorouridine. Cancer Chem Pharm 32:333-338, 1993

    Google Scholar 

  76. Folkman J: What is the role of thymidine phosphorylase in tumor angiogenesis? J Natl Cancer Inst 88:1091-1092, 1996

    Google Scholar 

  77. Ferrara N: Vascular endothelial growth factor. Eur J Cancer 32A:2413-2422, 1996

    Google Scholar 

  78. Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M, Matsubara I, Vinante O, Bonoldi E, Boracchi P, Gatti C, Suzuki H, Tominaga T: Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 89:139-147, 1997

    Google Scholar 

  79. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56:4625-4629, 1996

    Google Scholar 

  80. Ito A, Nakajima S, Sasaguri Y, Nagase H, Mori Y: Co-culture of human breast adenocarcinoma MCF-7 cells and human dermal fibroblasts enhances the production of matrix metalloproteinases 1, 2 and 3 in fibroblasts. Br J Cancer 71:1039-1045, 1995

    Google Scholar 

  81. Kondapaka SB, Fridman R, Reddy KB: Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int J Cancer 70:722-726, 1997

    Google Scholar 

  82. Klijn JGM, Berns PMJJ, Schmitz PIM, Foekens JA: The clinical significance of epidermal growth factor receptor (EGFR) in human breast cancer: A review on 5232 patients. Endocr Rev 13:3-17, 1992

    Google Scholar 

  83. Griffiths L, Dachs GU, Bicknell R, et al: The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor / thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res 57:570-572, 1997

    Google Scholar 

  84. Clauss M, Gerlach M, Gerlach H, Brett J, Wanf F, Familletti PC, Pan Y-C, Olander JV, Connolly DT, Stern D: Vascular permeability factor. A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172:1535-1545, 1990

    Google Scholar 

  85. Gabrilovich DI, Chen HL, Girgis KR, Cunningham T, Meny GM, Nadaf S, Kavanaugh D, Carbone D: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med 2:1096-1103, 1996

    Google Scholar 

  86. Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky D, Lyn P, Leavy J, Witte L, Joseph-Silverstein J, Furie M, Torcia G, Cozzolino F, Kamada K, Stern D: Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci 92:4606-4610, 1995

    Google Scholar 

  87. Sledge GW Jr, Qulali M, Goulet R, Bone EA, Fife R: Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J Natl Cancer Inst 87:1546-1550, 1995

    Google Scholar 

  88. Talbot DC, Brown PD: Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur J Cancer 32A:2528-2533, 1996

    Google Scholar 

  89. Anderson IC, Shipp MA, Docherty AJP, Teicher BA: Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res 56:715-718, 1996

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toi, M., Ishigaki, S. & Tominaga, T. Metalloproteinases and tissue inhibitors of metalloproteinases. Breast Cancer Res Treat 52, 113–124 (1998). https://doi.org/10.1023/A:1006167202856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006167202856

Navigation