Skip to main content
Log in

Prognostic significance of micrometastatic bone marrow involvement

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The present review focuses on the methodology and clinical significance of new diagnostic approaches to identify micrometastatic breast cancer cells present in bone marrow (BM), as a frequent site of overt metastases. Using monoclonal antibodies (mAbs) to epithelial cytokeratins (CK) or tumor-associated cell membrane glycoproteins, individual carcinoma cells can be detected on cytologic BM preparations at frequencies of 10-5 to 10-6. Prospective clinical studies have shown that the presence of these immunostained cells is prognostically relevant with regard to relapse-free and overall survival. The current interest in autologous bone marrow transplantation in patients with solid tumors further underlines the need for screening methods that allow the detection of minute numbers of residual tumor cells in the transplant. Although the development of new molecular detection methods based on the amplification of a marker mRNA species by the polymerase chain reaction technique is a very exciting area of research, the clinical significance of this approach needs to be demonstrated in prospective studies. The immunocytochemical assays may be, therefore, used to improve tumor staging with potential consequences for adjuvant therapy. Another promising clinical application is monitoring the response of micrometastatic cells to adjuvant therapies, which, at present, can only be assessed retrospectively after an extended period of clinical follow-up. The extremely low frequency of BM tumor cells greatly hampers approaches to obtain more specific information on their biological properties. The available data indicate that these cells represent a selected population of cancer cells which, however, still express a considerable degree of heterogeneity with regard to the expression of MHC class I antigens, adhesion molecules (EpCAM), growth factor receptors (EGF receptor, erb-B2, transferrin receptor), or proliferation-associated markers (Ki-67, p120). Regardless of the detection technique applied, there is an urgent demand for large multicentre trials, in which standardized methods are related to specified clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black RJ, Bray F, Ferlay J, Parkin DM: Cancer incidence and mortality in the European Union: cancer registry data and estimates of national incidence for 1990. Eur J Cancer 33:1075-1107, 1997

    Google Scholar 

  2. Pantel K: Detection of minimal disease in patients with solid tumors. J Hematother 5:359-367, 1996

    Google Scholar 

  3. Fidler IJ, Radinsky R: Genetic control of cancer metastasis. J Natl Cancer Inst 82:166-168, 1990

    Google Scholar 

  4. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327-336, 1991

    Google Scholar 

  5. Schlimok G, Funke I, Holzmann B, Göttlinger HG, Schmidt G, Häuser H, Swierkot S, Warnecke HH, Schneider B, Koprowski H, Riethmüller G: Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci USA 84:8672-8676, 1987

    Google Scholar 

  6. Mansi JL, Berger U, Easton D, McDonnell T, Redding WH, Gazet JC, McKinna A, Powles TJ, Coombes RC: Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br Med J 295:1093-1096, 1987

    Google Scholar 

  7. Mansi JL, Easton D, Berger U, Gazet JC, Ford HT, Dearnaley D, Coombes RC: Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years' follow-up. Eur J Cancer 27:1552-1555, 1991

    Google Scholar 

  8. Harbeck N, Untch M, Pache L, Eiermann W: Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br J Cancer 69:566-571, 1994

    Google Scholar 

  9. Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF, Kaul S, Bastert G: Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88:1652-1664, 1996

    Google Scholar 

  10. Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP: Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9:1749-1756, 1991

    Google Scholar 

  11. Schlimok G, Lindemann F, Holzmann K, Witte J, Renner D, Riethmüller G: Prognostic significance of disseminated tumor cells detected in bone marrow of patients with breast and colorectal cancer: a multivariate analysis. Proc Am Soc Clin Oncol 11:102 (abstract), 1992

    Google Scholar 

  12. Salvadori B, Squicciarini P, Rovini D, Orefice S, Andreola S, Rilke F, Barletta L, Menard S, Colnaghi MI: Use of monoclonal antibody MBr1 to detect micrometastases in bone marrow specimens of breast cancer patients. Eur J Cancer 26:865-867, 1990

    Google Scholar 

  13. Courtemanche DJ, Worth AJ, Coupland RW, Rowell JL, MacFarlane JK: Monoclonal antibody LICR-LON-M8 does not predict the outcome of operable breast cancer. Can J Surg 34:21-26, 1991

    Google Scholar 

  14. Mathieu MC, Friedman S, Bosq J, Caillou B, Spielmann M, Travagli JP, Contesso G: Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis in breast cancer. Breast Cancer Res Treat 15:21-26, 1990

    Google Scholar 

  15. Gogas H, Mansi JL, Bliss J, Coombes RC: Can the presence of micrometastases in primary breast cancer predict outcome? Long-term (median 12.5 yrs) follow-up. Proc ASCO 16:153a (abstract #537), 1997

    Google Scholar 

  16. Kirk SJ, Cooper GG, Hoper M, Watt PC, Roy AD, Olding-Smee W: The prognostic significance of marrow micrometastases in women with early breast cancer. Eur J Surg Oncol 16:481-485, 1990

    Google Scholar 

  17. Singletary SE, Larry L, Trucker SL, Spitzer G: Detection of micrometastatic tumor cells in bone marrow of breast carcinoma patients. J Surg Oncol 47:32-36, 1991

    Google Scholar 

  18. Osborne M, Rosen P: Detection and management of bone marrow micrometastases in breast cancer. Oncology 8:25-36, 1994

    Google Scholar 

  19. Mansi JL, Berger U, Wilson P, Shearer R, Coombes RC: Detection of tumor cells in bone marrow of patients with prostatic carcinoma by immunocytochemical techniques. J Urology 139:545-548, 1988

    Google Scholar 

  20. Braun S, Müller M, Hepp F, Schlimok G, Riethmüller G, Pantel K: Re: Micrometastatic breast cancer cells in bone marrow at primary surgery: Prognostic value in comparison with nodal status. J Natl Cancer Inst, in press

  21. Pantel K, Izbicki JR, Passlick B, Angstwurm M, Häussinger K, Thetter O, Riethmüller G: Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small cell lung cancer without overt metastases. Lancet 347:649-653, 1996

    Google Scholar 

  22. Schlimok G, Funke I, Bock B, Schweiberer B, Witte J, Riethmüller G: Epithelial tumor cells in bone marrow of patients with colorectal cancer: immunocytochemical detection, phenotypic characterization, and prognostic significance. J Clin Oncol 8:831-837, 1990

    Google Scholar 

  23. Braun S, Pantel K: Biological characteristics of micrometastatic carcinoma cells in bone marrow. In: Günthert U, Birchmeier W (eds) Attempts to understand metastasis formation, Vol 213/I, pp 163-177. Springer, Berlin-New York-Tokyo, 1996

    Google Scholar 

  24. Pantel K, Schlimok G, Angstwurm M, Weckermann C, Schmaus W, Gath H, Passlick B, Izbicki J, Riethmüller G: Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow. J Hematother 3:165-173, 1994

    Google Scholar 

  25. Gallee MPW, van Vroonhoven CCJ, van der Korput HAGM, van der Kwast TH, ten Kate FJW, Romijn JC, Trapman J: Characterization of monoclonal antibodies raised against prostatic cell line PC-82. Prostate 9:33-45, 1986

    Google Scholar 

  26. Osborne M, Wong G, Asina S, Old L, Cote R, Rosen P: Sensitivity of immunocytochemical detection of breast cancer cells in human bone marrow. Cancer Res 51:2706-2709, 1991

    Google Scholar 

  27. Molino A, Colombatti M, Bonetti F, Zardini M, Pasini F, Perini A, Pelosi G, Tridente G, Veneri D, Cetto GL: A comparative analysis of three different techniques for the detection of breast cancer cells in bone marrow. Cancer 67:1033-1036, 1991

    Google Scholar 

  28. Jauch KW, Heiss MM, Gruetzner KU, Funke I, Pantel K, Babic R, Eissner HJ, Riethmüller G, Schildberg FW: Prognostic significance of bone marrow micrometastases in patients with gastric cancer. J Clin Oncol 14:1810-1817, 1996

    Google Scholar 

  29. Diel IJ, Kaufmann M, Goerner R, Costa SD, Kaul S, Bastert G: Detection of tumor cells in bone marrow of patients with primary breast cancer: a prognostic factor for distant metastasis. J Clin Oncol 10:1534-1539, 1992

    Google Scholar 

  30. Schwarz G: Cytomorphology and cell yield in a new cytocentrifugal technique allowing the collection of the cell-free supernatant. Lab Med 15:45-50, 1991

    Google Scholar 

  31. Gribben JG, Freedman AS, Neuberg D: Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation of B-cell lymphoma. N Engl J Med 325:1525-1533, 1991

    Google Scholar 

  32. Bos IL: Ras oncogenes in human cancer: a review. Cancer Res 49:4682-4689, 1989

    Google Scholar 

  33. Harris CC, Hollstein M: Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329:1318-1327, 1993

    Google Scholar 

  34. Hayashi N, Arakawa H, Nagase H, Yanagisawa A, Kato Y, Ohta H, Takano S, Ogawa M, Nakamura Y: Genetic diagnosis identifies occult lymph node metastases undetectable by the histopathological method. Cancer Res 54:3853-3856, 1994

    Google Scholar 

  35. Hayashi N, Ito I, Yanagisawa A, Kato Y, Nakamori S, Imaoka S, Watanabe H, Ogawa M, Nakamura K: Genetic diagnosis of lymph-node metastasis in colorectal cancer. Lancet 345:1257-1259, 1995

    Google Scholar 

  36. Zippelius A, Kufer P, Honold G, Köllermann MW, Oberneder R, Schlimok G, Riethmüller G, Pantel K: Limitations of reverse transcriptase-polymerase chain reaction for detection of micrometastatic epithelial cancer cells in bone marrow. J Clin Oncol 15:2701-2708, 1997

    Google Scholar 

  37. de Graaf H, Mælandssmo GM, Ruud P, Forus A, Øyjord T, Fodstad Ø, Hovig E: Ectopic expression of target genes may represent an inherent limitation of RT-PCR assays used for micrometastasis detection: studies on the epithelial glycoprotein gene EGP-2. Int J Cancer 722:191-196, 1997

    Google Scholar 

  38. Krismann M, Todt B, Schröder J, Gareis D, Müller KM, Seeber S, Schütte J: Low specificity of cytokeratin 19 reverse transcriptase-polymerase chain reaction analyses for detection of hematogenous lung cancer dissemination. J Clin Oncol 13:2769-2775, 1995

    Google Scholar 

  39. Schoenfeld A, Luqmani Y, Smith D, O'Reilly S, Shousha S, Sinnett HD, Coombes RC: Detection of breast cancer micrometastases in axillary lymph nodes by using Polymerase Chain Reaction. Cancer Res 54:2986-2990, 1994

    Google Scholar 

  40. Traweek ST, Liu J, Battifora H: Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction. Am J Pathol 142:1111-1118, 1993

    Google Scholar 

  41. Datta YH, Adams PT, Drobyski WR: Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 12:475-482, 1994

    Google Scholar 

  42. Fields KK, Elfenbein GJ, Trudeau WL, Perlinss JB, Jansen WE, Moscinski LC: Clinical significance of bone marrow metastases as detected using polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 14:1868-1876, 1996

    Google Scholar 

  43. Gerhard M, Juhl H, Kalthoff H, Schreiber HW, Wagener C, Neumaier M: Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aspirates by polymerase chain reaction. J Clin Oncol 12:725-729, 1994

    Google Scholar 

  44. Kamby K, Guldhammer B, Vejborg I, Rossing N, Dirksen H, Daugaard S, Mouridsen HT: The presence of tumor cells in bone marrow at the time of first recurrence of breast cancer. Cancer 60:1306-1312, 1987

    Google Scholar 

  45. Ridell B, Landys K: Incidence and histopathology of metastases of mammary carcinoma in biopsies from the posterior iliac crest. Cancer 44:1782-1788, 1979

    Google Scholar 

  46. Redding HW, Coombes RC, Monagham P, Clink HMD, Imrie SF, Dearnaley DP, Ormerod MG, Sloane JP, Gazet JC, Powles TJ, Neville AM: Detection of micrometastases in patients with primary breast cancer. Lancet ii:1271-1274, 1983

    Google Scholar 

  47. Taylor-Papadimitriou J, Burchell J, Moss F, Beverly P: Monoclonal antibodies to epithelial membrane antigen and human milk fat globule mucin define epitopes expressed on other molecules. Lancet: i:458, 1985

    Google Scholar 

  48. Heyderman E, Macartney JC: Epithelial membrane antigen and lymphoid cells. Lancet i:109, 1985

    Google Scholar 

  49. Delsol G, Gatter KC, Stein H, Erber WN, Pulfod KAF, Zinne K, Mason DY: Human lymphoid cells express epithelial membrane antigen. Lancet ii:1124-1128, 1984

    Google Scholar 

  50. Berger U, Bettelheim R, Mansi JL, Easton D, Coombes RC, Neville AM: The relationship between micrometastases in the bone marrow, histopathologic features of the primary tumor in breast cancer and prognosis. Am J Clin Pathol 90:1-6, 1988

    Google Scholar 

  51. Cote RJ, Rosen PP, Hakes TB, Sedira M, Bazinet M, Kinne DW, Old LJ, Osborne MP: Monoclonal antibodies detect occult breast carcinoma metastases in the bone marrow of patients with early stage disease. Am J Surg Pathol 12:333-340, 1988

    Google Scholar 

  52. Pantel K, Braun S, Schlimok G, Janni W, Hepp F, Kentenich C, Müller M, Sommer HL, Riethmüller G: Association of cytokeratin(CK)-positive breast cancer (BC) micrometastases with early recurrence and poor overall survival. Proc ASCO, submitted, 1998

  53. Fox SB, Leek RD, Bliss J, Mansi JL, Gusterson B, Gatter KC, Harris AL: Association of tumor angiogenesis with bone marrow micrometastases in breast cancer. J Natl Cancer Inst 89:1044-1049, 1997

    Google Scholar 

  54. Schlimok G, Lindemann F, Holzmann K, Witte J, Pantel K, Riethmüller G: Prognostic significance of tumor cells detected in bone marrow of breast cancer patients. In: The Lancet Conference, 1994, Brugge, Belgium, p 47

    Google Scholar 

  55. Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, Backmann R, Funke I, Riethmüller G: Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res 51:4712-4715, 1991

    Google Scholar 

  56. Pantel K, Schlimok G, Braun S, Kutter D, Schaller G, Funke I, Izbicki J, Riethmüller G: Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 85:1419-1424, 1993

    Google Scholar 

  57. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710-1715, 1984

    Google Scholar 

  58. Freeman JW, Busch RK, Gyorkey F, Gyorkey P, Ross BE, Busch H: Identification and characterization of a human proliferation-associated nucleolar antigen with a molecular weight of 120,000 expressed in early G1 phase. Cancer Res 48:1244-1251, 1988

    Google Scholar 

  59. Ochs RL, Reilly MT, Freeman JW, Busch H: Intranucleolar localization of human proliferating cell nucleolar antigen p120. Cancer Res 48:6523-6529, 1988

    Google Scholar 

  60. Schlimok G, Riethmüller G: Detection, characterization and tumorigenicity of tumor cells in human bone marrow. Semin Cancer Biol 1:207-215, 1990

    Google Scholar 

  61. Salmon JD, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MF: Studies of the HER-2/neu proto-oncogene in human breast cancer and ovarian cancer. Science 244:707-712, 1989

    Google Scholar 

  62. Bianchi S, Paglierani M, Zampi G, Cardona G, Cataliotti L, Bonardi R, Ciatto S: Prognostic significance of c-erbB-2 expression in node negative breast cancer. Br J Cancer 67:625-629, 1993

    Google Scholar 

  63. Berger MS, Locher GW, Saurer S, Gullick WJ, Waterfield MD, Groner B, Hynes NE: Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res 48:1238-1243, 1988

    Google Scholar 

  64. Tiwari RK, Borgen PI, Wong GY, Cordon CC, Osborne MP: HER-2/neu amplification and overexpression in primary human breast cancer is associated with early metastasis. Anticancer Res 12:419-425, 1992

    Google Scholar 

  65. Varley JM, Swallow JE, Brammar WJ, Whittaker JL, Walker RA: Alterations to either c-erbB-2(neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1:423-430, 1987

    Google Scholar 

  66. Venter DJ, Tuzi NL, Kumar S, Gullick WJ: Over-expression of the c-erb-B-2 oncoprotein in human breast carcinomas: immunohistochemical assessment correlates with gene amplification. Lancet ii: 69-72, 1987

    Google Scholar 

  67. Taylor-Papadimitriou J: Oncogene signalling, epithelial polarity, and metastatic phenotype. In: The Lancet Conference, 1994, Brugge, Belgium, p 7

  68. Hoffman M: New clue found to oncogene's role in breast cancer. Science 256:1129, 1992

    Google Scholar 

  69. Lupu R, Colomer R, Kannan B, Lippman ME: Characterization of a growth factor that binds exclusively to the erbB2 receptor and induces cellular responses. Proc Natl Acad Sci USA 89:2287-2291, 1992

    Google Scholar 

  70. Peles E, Bacus SS, Koski RA, Lu HS, Wen D, Ogden SG, Levy RB, Yarden Y: Isolation of the neu/HER-2 stimulatory ligand: a 44 kD glycoprotein that induces differentiation of mammary tumor cells. Cell 69:205-216, 1992

    Google Scholar 

  71. Riethmüller G, Johnson JP: Monoclonal antibodies in the detection and therapy of micrometastatic epithelial cancer. Curr Opin Immunol 4:647-655, 1992

    Google Scholar 

  72. Hämmerling G, Maschek V, Sturmhöfel K, Momburg F: Regulation and functional role of MHC expression on tumors. In: Melchers F (ed) Prog Immunol. Springer, Berlin, 1989, pp 1071-1078

    Google Scholar 

  73. Pardoll DM: Cancer vaccines. Immunol Today 14:310-316, 1993

    Google Scholar 

  74. Nabel GJ, Felgner PL: Direct gene transfer for immunotherapy and immunization. In: Robinson C, Watson F (eds) Trends in Biotechnology: Gene Therapy — Therapeutic Strategies and Commercial Prospects. Bousfield, Cambridge, 1993, pp 211-214

    Google Scholar 

  75. Behrens J, Frixen U, Schipper J, Weidner M, Birchmeier W: Cell adhesion in invasion and metastasis. Semin Cell Biol 3:169-178, 1992

    Google Scholar 

  76. Hart IR, Goode NT, Wilson RE: Molecular aspects of the metastatic cascade. Biochim Biophys Acta 989:65-84, 1989

    Google Scholar 

  77. Schwarz MA, Owaribe K, Kartenbeck J, Franke WW: Desmosomes and hemidesmosomes: Constitutive molecular components. Annu Rev Cell Biol 6:461-491, 1990

    Google Scholar 

  78. Göttlinger HG, Funke I, Johnson JP, Gokel JM, Riethmüller G: The epithelial cell surface antigen 17-1A, a target for antibody-mediated tumor therapy: Its biochemical nature, tissue distribution and recognition by different monoclonal antibodies. Int J Cancer 38:47-53, 1986

    Google Scholar 

  79. Litvinov SV, Velders MP, Bakker HAM, Fleuren GJ, Warnaar SO: Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 125:437-446, 1994

    Google Scholar 

  80. Riethmüller G, Schneider-Gädicke E, Schlimok G, Schmiegcl W, Raab R, Höffken K, Gruber R, Pichlmaier H, Hirche H, Pichlmayr R, Buggisch P, Witte J, The German Cancer Aid 17-1A Study Group: Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes C colorectal carcinoma. Lancet 343:1177-1183, 1994

    Google Scholar 

  81. Schlimok G, Pantel K, Loibner H, Fackler-Schwalbe I, Riethmüller G: Reduction of metastatic carcinoma cells in bone marrow by intravenously administered monoclonal antibody: towards a novel surrogate test to monitor adjuvant therapies of solid tumours. Eur J Cancer 31A:1799-1803, 1995

    Google Scholar 

  82. Scholz D, Lubeck M, Loibner H: Biological activity in the human system of isotype variants of oligosaccharide Y-specific murine monoclonal antibodies. Cancer Immunol Immunother 33:153-157, 1991

    Google Scholar 

  83. Hempel D, Müller P, Oruzio D, Ehnle S, Schlimok G: Adoptive immunotherapy with monoclonal antibody 17-1A to reduce minimal residual disease in breast cancer patients after high-dose chemotherapy. Blood 90Suppl 1:379B, abstract #4454, 1997

    Google Scholar 

  84. Hohaus S, Funk L, Brehm M, Abdallah A, Murea S, Kaul S, Haas R: Persistence of isolated tumor cells in patients with breast cancer after sequential high-dose therapy with peripheral blood stem cell transplantation. Blood 88suppl 10:128A, abstract #501, 1996

    Google Scholar 

  85. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, Norton N: Phase II study of weekly intravenous recombinant humanized anti-p185Her2 monoclonal antibody in patients with Her2-neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737-744, 1996

    Google Scholar 

  86. Jain RK: Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50 2741-2451, 1990

    Google Scholar 

  87. Dillman RO: Antibodies as cytotoxic therapy. J Clin Oncol 12:1497-1515, 1994

    Google Scholar 

  88. Braun S, Hepp F, Sommer HL, Pantel K: Tumor antigen heterogeneity of disseminated breast cancer cells: Implications for immunotherapy of minimal residual disease. Int J Cancer, in press

  89. Scott AM, Welt S: Antibody-based immunological therapies. Curr Opin Immunol 9:717-722, 1997

    Google Scholar 

  90. Funke I, Schraut W: Meta-analysis of studies on bone marrow micrometastases: An independent prognostic impact remains to be substantiated. J Clin Oncol, in press, 1997

  91. Roberts WM, Estrov Z, Ouspenskaia MV, Johnston DA, McClain KL, Zipf TF. Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med 336:317-323, 1997

    Google Scholar 

  92. Pantel K, Dickmanns A, Zippelius A, Klein C, Shi J, Hoechtlen-Vollmar W, Schlimok G, Weckermann D, Oberneder R, Fanning E, Riethmüller G: Establishment of micrometastatic carcinoma cell lines: a novel source of tumor cell vaccines. J Natl Cancer Inst 87:1162-1168, 1995

    Google Scholar 

  93. Pantel K, Putz E, Riethmüller G: Identification of new therapeutic targets on bone marrow micrometastases. Blood 90,Suppl 1:421A, abstract #1871. 1997

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, S., Pantel, K. Prognostic significance of micrometastatic bone marrow involvement. Breast Cancer Res Treat 52, 201–216 (1998). https://doi.org/10.1023/A:1006164914610

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006164914610

Navigation