Skip to main content

Advertisement

Log in

The Role of Cell Motility in Prostate Cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cell motility is a critical determinant of prostate cancer metastasis. The current review discusses the role for cell motility in metastatic dissemination, the evidence that prostate cancer metastasis is dependent on increased cell motility and describes the molecules whose expression has been shown to correlate with the increased motility that accompanies prostate cancer progression. These include receptors for growth factors and cytokines that regulate cell motility as well as intracellular proteins that interact with actin or that regulate signal transduction associated with cell motility. Motility related modulators include both positive regulators of cell movement that are upregulated during tumor progression and suppressors of cell movement that are down-regulated during progression. Because altered expression of such genes may determine the metastatic potential of any particular prostate tumor, we conclude that the appearance or disappearance of motility-related molecules could be used to aid in the diagnosis and prognosis of human prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gleason DF, Mellinger GT: Prediction of prognosis for prostate adenocarcinoma by combined histological grading and clinical staging. J Urol 111: 58-64, 1974

    PubMed  Google Scholar 

  2. Isaacs JT, Isaacs WB, Feitz WFJ, Scheres J: Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate 9: 261-281, 1986

    PubMed  Google Scholar 

  3. Dunning WP: Prostatic cancer in the rat. Natl Cancer Instit Monogr 12: 351-369, 1963

    Google Scholar 

  4. Mohler JL, Partin AW, Coffey DS: Prediction of metastatic potential by a new grading system of cell motility: validation in the Dunning R-3327 prostatic adenocarcinoma model. J Urol 138: 168-170, 1987

    PubMed  Google Scholar 

  5. Mohler JL, Partin AW, Isaacs JT, Coffey DS: Metastatic potential predication by a visual grading system of cell motility: prospective validation in the Dunning R-3327 prostatic adenocarcinoma model. Cancer Res 48: 4312-4317, 1988

    PubMed  Google Scholar 

  6. Partin AW, Schoeniger JS, Mohler JL, Coffey DS: Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc Natl Acad Sci USA 86: 1254-1258, 1989

    PubMed  Google Scholar 

  7. Doyle GM, Sharief Y, Mohler JL: Prediction of metastatic potential by cancer cell motility in the Dunning R-3327 prostatic adenocarcinoma in vivomodel. J Urol 147: 514-518, 1992

    PubMed  Google Scholar 

  8. Ching KZ, Ramsey E, Pettigrew N, D'Cunha R, Jason M, Doss JG: Expression of mRNA for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines. Mol Cell Biochem 126: 151-158, 1993

    PubMed  Google Scholar 

  9. Zolfaghari A, Djakiew D: Inhibition of chemomigration of a human prostatic carcinoma cell (TSU-Pr1) line by inhibition of epidermal growth factor receptor function. Prostate 28: 232-238, 1996

    PubMed  Google Scholar 

  10. Xie H, Turner T, Wang M-H, Singh RK, Siegel GP, Wells A: In vitroinvasiveness of DU-145 human prostate carcinoma cells is modulated by EGF receptor-mediated signals. Clin Exp Metast 13: 407-419, 1995

    Google Scholar 

  11. Turner T, Chen P, Goodly LJ, Wells A: EGF receptor signaling enhances in vivoinvasiveness of DU-145 human prostate carcinoma cells. Clin Exp Metast 4: 409-418, 1996

    Google Scholar 

  12. Hobeika AC, Etienne W, Cruz PE, Subramaniam PS, Johnson HM: IFNgamma induction of p21WAF1 in prostate cancer cells: role in cell cycle, alteration of phenotype and invasive potential. Int J Cancer 77: 138-145, 1998

    Article  PubMed  Google Scholar 

  13. Evans CP, Walsh DS, Kohn EC: An autocrine motility factor secreted by the Dunning R-3327 rat prostatic adenocarcinoma cell subtype AT2.1. Int J Cancer 49: 109-113, 1991

    PubMed  Google Scholar 

  14. Silletti S, Yao JP, Pieta KJ, Raz A: Loss of cell-contact regulation and altered responses to autocrine motility factor correlate with increased malignancy in prostate cancer cells. Int J Cancer 63: 100-105, 1995

    PubMed  Google Scholar 

  15. Morton DM, Barrack ER: Modulation of transforming growth factor beta 1 effects on prostate cancer cell proliferation by growth factors and extracellular matrix. Cancer Res 55: 2596-2602, 1995

    PubMed  Google Scholar 

  16. Matuo Y, Nishi N, Takasuka H, Masuda Y, Nishikawa K, Isaacs JT, Adams PS, McKeehan WL, Sato GH: Production and significance of TGF-beta in AT-3 metastatic cell line established from the Dunning rat prostatic adenocarcinoma. Biochem Biophys Res Commun 166: 840-847, 1990

    PubMed  Google Scholar 

  17. Guo Y, Jacobs SC, Kyprinou N: Down-regulation of protein and mRNA expression for transforming growth factor-beta (TGF-beta 1) type I and type II receptors in human prostate cancer. Int J Cancer 71: 573-579, 1997

    PubMed  Google Scholar 

  18. Ritchie CK, Andrews LR, Thomas KG, Tindall DJ, Fitzpatrick LA: The effects of growth factors associated with osteoblasts on prostate carcinoma proliferation and chemotaxis: implications for the development of metastatic disease. Endocrinology 138: 1145-1150, 1997

    Article  PubMed  Google Scholar 

  19. Figueroa JA, De Raad S, Tadlock L, Speights VO, Rinehart JJ: Differential expression of insulin-like growth factor binding proteins in high versus low Gleason score prostate cancer. J Urol 159: 1379-1383, 1998

    Article  PubMed  Google Scholar 

  20. Aprikian AG, Tremblay L, Han K, Chevalier S: Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. Int J Cancer 72: 498-504, 1997

    PubMed  Google Scholar 

  21. Ritchie CK, Thomas KG, Andrews LR, Tindall DJ, Fitzpatrick LA: Effects of the calciotrophic peptides calcitonin and parathyroid hormone on prostate cancer growth and chemotaxis. Prostate 30: 183-187, 1997

    PubMed  Google Scholar 

  22. Wu G, Iwamura M, di Sant'Agnese PA, Deftos LJ, Cockett AT, Gersahgen S: Characterization of the cell-specific expression of parathyroid hormone-related protein in normal and neoplastic prostate tissue. Urology (51;5A Suppl): 110-120, 1998

    Article  PubMed  Google Scholar 

  23. Murphy BC, Pienta KJ, Coffey DS: Effects of extracellular matrix components and dihydrotestosterone on the structure and function of human prostate cancer cells. Prostate 20: 29-41, 1992

    PubMed  Google Scholar 

  24. Djakiew D, Pflug BR, Delsite R, Onoda M, Lynch JH, Arand G, Thompson EW: Chemotaxis and chemokinesis of human prostate tumor cell lines in response to human prostate stromal cell secretory proteins containing a nerve growth factor-like protein. Cancer Res 53: 1416-1420, 1993

    PubMed  Google Scholar 

  25. Geldof AA, De Kleijn MA, Rao BR, Newling DW: Nerve growth factor stimulates in vitroinvasive capacity of DU145 human prostatic cancer cells. J Cancer Res Clin Oncol 123: 107-112, 1997

    PubMed  Google Scholar 

  26. Nishimura K, Kitamura M, Takeda S, Nonomura N, Tsujimura A, Matsumiya K, Miki T, Matsumoto K, Okuyama A: Regulation of invasive potential of human prostate cancer cell lines by hepatocyte growth factor. Int J Urol 5: 276-281, 1998

    PubMed  Google Scholar 

  27. Mohler JL, Bakewell WE, Sharief Y, Coleman WB, Chay CH, Silvers SM, Smith GJ: Detection of candidates for cancer cell motility inhibitory protein in the Dunning adenocarcinoma model. Clin Exp Metast 13: 474-480, 1995

    Google Scholar 

  28. Hullinger TG, McCauley LK, DeJoode ML, Somerman MJ: Effect of bone proteins on human prostate cancer cell lines in vitro. Prostate 36: 12-22, 1998

    Article  Google Scholar 

  29. Freeman MR, Bagli DJ, Lamb CC, Guthrie PD, Uchida T, Slavin RE, Chung LW: Culture of a prostatic cell line in basement membrane gels results in an enhancement of malignant properties and constitutive alterations in gene expression. J Cell Physiol 158: 325-336, 1994

    PubMed  Google Scholar 

  30. Rabinovitz I, Nagle RB, Cress AE: Integrin alpha6 expression in human prostate carcinoma cells is associated with a migratory and invasive phenotype in vitroand in vivo. Clin Exp Metast 13: 481-491, 1995

    Google Scholar 

  31. Trikha M, Raso E, Cai Y, Fazakas Z, Paku S, Porter AT, Timar J, Honn KV: Role of alpha II (b)beta3 integrin in prostate cancer metastasis. Prostate 35: 185-192, 1998

    Article  PubMed  Google Scholar 

  32. Trikha M, Cai Y, Grignon D, Honn KV: Identification of a novel truncated alpha IIb integrin. Cancer Res 58: 4771-4775, 1998

    PubMed  Google Scholar 

  33. Haywood-Reid PL, Zipf DR, Springer WR: Quantification of integrin subunits on human prostatic cell lines: comparison of nontumorigenic and tumorigenic lines. Prostate 31: 1-8, 1997

    Article  PubMed  Google Scholar 

  34. Gaylis FD, Keer HN, Wilson MJ, Kwaan HC, Sinha AA, Kozlowski JM: Plasminogen activators in human prostate cancer cell lines and tumors: correlation with the aggressive phenotype. J Urol 142: 193-198, 1989

    PubMed  Google Scholar 

  35. Quax PH, de Bart AC, Schalken JA, Verheijen JH: Plasminogen activator and matrix metalloproteinase production and extracellular matrix degradation by rat prostate cancer cells in vitro: correlation with metastatic behavior in vivo. Prostate 32: 196-204, 1997

    Article  PubMed  Google Scholar 

  36. Lowe FC, Isaacs JT: Biochemical methods for predicting metastatic ability of prostatic cancer utilizing the Dunning R-3327 rat prostatic adenocarcinoma system as a model. Cancer Res 44: 744-52, 1984

    PubMed  Google Scholar 

  37. Lokeshwar VB, Lokeshwar BL, Pham HT, Block NL: Association of elevated levels of hyaluronidase, a matrix-degrading enzyme, with prostate cancer progression. Cancer Res 56: 651-657, 1996

    PubMed  Google Scholar 

  38. Sehgal G, Hua J, Bernhard EJ, Sehgal I, Thompson TC, Muschel RJ: Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. Am J Pathol 152: 591-596, 1998

    PubMed  Google Scholar 

  39. Pienta KJ, Murphy BC, Isaacs WB, Isaacs JT, Coffey DS: Effect of Pentosan, a novel cancer chemotherapeutic agent, on prostate cancer cell growth and motility. Prostate 20: 233-241, 1992

    PubMed  Google Scholar 

  40. Mareel MM, Storme GA, Dragonetti CH, De Bruyne GK, Hartley-Asp B, Segers JL, Rabaey ML: Anti-invasive activity of estramustine on malignant MO4 mouse cells and on DU-145 human prostate carcinoma cells in vitro. Cancer Res 48: 1842-1849, 1988

    PubMed  Google Scholar 

  41. Kim JH, Tanabe T, Chodak GW, Rukstalis DB: In vitroanti-invasive effects of N-(4-hydroxyphenyl)-retinamide on human prostatic adenocarcinoma. Anticancer Res 15: 1429-1434, 1995

    PubMed  Google Scholar 

  42. Bao L, Loda M, Janmey PA, Stewart R, Anand-Apte B, Zetter BR: Thymosin β15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nature Med 2: 1322-1328, 1996

    Article  PubMed  Google Scholar 

  43. Keshgegian AA, Johnston E, Cnaan A: Bcl-2 oncoprotein positivity and high MIB-1 (Ki-67) proliferative rate are independent predictive markers for recurrence in prostate carcinoma. Am J Clin Pathol 110: 443-449, 1988

    Google Scholar 

  44. Del Bufalo D, Biroccio A, Leonetti C, Zupi G: Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. FASEB J 11: 947-953, 1997

    PubMed  Google Scholar 

  45. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943-1947, 1997

    Article  PubMed  Google Scholar 

  46. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada K: Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor, PTEN. Science 280: 1614-1617, 1998

    Article  PubMed  Google Scholar 

  47. Tremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S: Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 68: 164-171, 1996

    Article  PubMed  Google Scholar 

  48. Zachary I: Focal adhesion kinase. Int J Biochem Cell Biol 29: 929-934, 1997

    Article  PubMed  Google Scholar 

  49. Dong J-T, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC: KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268: 884-886, 1995

    PubMed  Google Scholar 

  50. Theodorescu D, Broder SR, Boyd JC, Mills SE, Frierson HF Jr: p53, bcl-2 and retinoblastoma proteins as long term prognostic markers in localized carcinoma of the prostate. J Urol 158: 131-137, 1997

    Article  PubMed  Google Scholar 

  51. Li J, Hu SX, Perng GS, Zhou Y, Xu K, Zhang C, Seigne J, Benedict WF, Xu HJ: Expression of the retinoblastoma (RB) tumor suppressor gene inhibits tumor cell invasion in vitro. Oncogene 13: 2379-2386, 1996

    PubMed  Google Scholar 

  52. Kallakury BV, Yang F, Figge J, Smith KE, Kausik SJ, Tacy NJ, Fisher HA, Kaufman R, Figge H, Ross JS: Decreased levels of CD44 protein and mRNA in prostate carcinoma. Correlation with tumor grade and ploidy. Cancer 78: 1461-1469, 1996

    Article  PubMed  Google Scholar 

  53. Gao AC, Lou W, Sleeman JP, Isaacs JT: Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res 58: 2350-2352, 1998

    PubMed  Google Scholar 

  54. Miyake H, Hara I, Okamoto I, Gohji K, Yamanaka K, Arakawa S, Saya H, Kamidono S: Interaction between CD44 and hyaluronic acid regulates human prostate cancer development. J Urol 160: 1562-1564, 1998

    Article  PubMed  Google Scholar 

  55. Bussemakers MJG, van Moorselaar RJA, Giroldi LA, Ichikawa T, Isaacs JT, Takeichi M, Debruyne FMJ, Schalken JA: Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 52: 2916-2922, 1992

    PubMed  Google Scholar 

  56. Kantor JD, McCormick B, Steeg PS, Zetter BR: Inhibition of tumor motility after nm23 transfection of human and murine tumor cells. Cancer Res 53: 1971-1973, 1993

    PubMed  Google Scholar 

  57. Ray JM, Stetler-Stevenson WG: TIMP-2 expression modulates human melanoma cell adhesion and motility. Ann N Y Acad Sci. 732: 233-247, 1994

    PubMed  Google Scholar 

  58. Takanaga K, Nakamura Y, Endo H, Sakiyama S: Involvement of S100-related calcium-binding protein pEL98 (or mts1) in cell motility and tumor cell invasion. Jpn J Cancer Res 85: 831-839, 1994

    PubMed  Google Scholar 

  59. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55: 4525-4530, 1995

    PubMed  Google Scholar 

  60. Jarrard DF, Bova GS, Ewing CM, Pin SS, Nguyen SH, Baylin SB, Cairns P, Sidransky D, Herman JG, Isaacs WB: Deletional, mutational, and methylation analyses ofCDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Gen Chrom Canc 19: 90-96, 1997

    Google Scholar 

  61. Gao X, Porter AT, Honn KV: Involvement of the multiple tumor suppressor genes and 12-lipoxygenase in human prostate cancer. Therapeutic implications. Av Exp Med Biol 417: 41-53, 1997

    Google Scholar 

  62. Sun Y, Lin J, Katz AE, Fisher PB: Human prostatic carcinoma oncogene PTI-1 is expressed in human tumor cell lines and prostate carcinoma blood samples. Cancer Res 57: 18-23, 1997

    PubMed  Google Scholar 

  63. Rinker-Schaeffer CW, Chekmareva MA, Mohler JL: The role of motility proteins and metastasis-suppressor genes in prostate cancer progression. Stem Cells 14: 508-516, 1996

    PubMed  Google Scholar 

  64. Dong J-T, Isaacs WB, Isaacs JT: Molecular advances in prostate cancer. Curr Opin Oncology 9: 101-107, 1997

    Google Scholar 

  65. Fong CJ, Sutkowski DM, Kozlowski JM, Lee C: Utilization of the Boyden chamber to further characterize in vitromigration and invasion of benign and malignant human prostatic epithelial cells. Invas Metast 12: 264-274, 1992

    Google Scholar 

  66. Wang FL, Wang Y, Ong WK, Liu Y, Addivinola FJ, Liang P, Chen LB, Kantoff PW, Pardee AB: Two differentially expressed genes in normal human prostate tissue and in carcinoma. Cancer Res 56: 3634-3637, 1996

    PubMed  Google Scholar 

  67. Smith P, Rhodes NP, Shortland AP, Fraser SP, Djamgoz MB, Ke Y, Foster CS: Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Lett 423: 19-24, 1998

    Article  PubMed  Google Scholar 

  68. Viola MV, Fromowitz F, Oravez S, Deb S, Finkel G, Lundy J, Hand P, Thor A, Schlom J: Expression of rasoncogene p21 in prostate cancer. N Eng J Med 314: 133-137, 1986

    Google Scholar 

  69. Partin AW, Isaacs JT, Treiger B, Coffey DS: Early cell motility changes associated with an increase in metastatic ability in rat prostatic cancer cells transfected with the v-Harvey-rasoncogene. Cancer Res 48: 6050-6053, 1988

    PubMed  Google Scholar 

  70. Cooke DB, Quarmby VE, Petrusz P, Mickey DD, Der CJ, Isaacs JT, French FS: Expression of rasproto-oncogenes in the Dunning R3327 rat prostatic adenocarcinoma system. Prostate 13: 273-287, 1988

    PubMed  Google Scholar 

  71. Powell CT, Gschwend JE, Fair WR, Brittis NJ, Stec D, Huryk R: Overexpression of protein kinase C-zeta (PKCzeta) inhibits invasive and metastatic abilities of Dunning R-3327MAT-LyLu rat prostate cancer cells. Cancer Res 56: 4137-4141, 1996

    PubMed  Google Scholar 

  72. Epner DE, Partin AW, Schalken JA, Isaacs JT, Coffey DS: Association of glyceraldehyde-3-phosphate dehydrogenase expression with cell motility and metastatic potential of rat prostatic adenocarcinoma. Cancer Res 53: 1995-1997, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banyard, J., Zetter, B.R. The Role of Cell Motility in Prostate Cancer. Cancer Metastasis Rev 17, 449–458 (1998). https://doi.org/10.1023/A:1006150007710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006150007710

Navigation