Skip to main content
Log in

Abstract

In the early 1980s a major obstacle for myocardial SPECT using iodine-123-labeled fatty acids and imaging technology available at that time was the rapid metabolism and myocardial washout of activity. Development of the 15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) fatty acid analogue was based on the established effects of methyl-branching in delineating the enzymatic aberration in Refum's disease and our early studies with the tellurium (Te)-substituted fatty acid analogues. Extensive animal studies with the Te-fatty acids demonstrated that this major structural alteration did not affect initial myocardial extraction, but could successfully inhibit subsequent metabolism and significantly delay wash-out. Tracer kinetic evaluation and metabolic studies on experimental animals and Langendorff-perfused rat hearts clearly demonstrated that introduction of methyl-branching is an effective approach which alters tracer kinetics by delaying myocardial washout of radioiodinated fatty acids by increasing myocardial retention. Although irreversible retention of iodine-123 BMIPP is not observed, subsequent extensive human studies have clearly substantiated the delayed myocardial washout of BMIPP in comparison with the p-IPPA straight chain analogue. Although contemporary SPECT capabilities allow much more rapid acquisition periods, the delayed washout is still a practical benefit in relation to the use of BMIPP. Most important, the unexpected mis-match which has been widely observed between perfusion tracer distribution and the regional BMIPP distribution (i.e. BMIPP < flow tracer) has been linked to the identification of jeopardized, but viable myocardial regions. In this paper the development of BMIPP is discussed and the results of recent studies focusing on evaluating the effects of the absolute configuration of the branched methyl group using the 3(R)-BMIPP and 3(S)-BMIPP are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knapp FF Jr, Kropp J, Franken PR, et al. Pharmacokinetics of radioiodinated fatty acid myocardial imaging agents in animal models and human studies. Quart J Nucl Med 1996; 40: 252-269.

    Google Scholar 

  2. Knapp FF Jr, Kropp J. Iodine-123-labeled fatty acids for myocardial single-photon emission tomography: current status and future perspectives. Eur J Nucl Med 1995; 22: 3.

    Google Scholar 

  3. Knapp FF Jr, Franken P, Kropp J. Cardiac SPECT with iodine-123-labeled fatty acids: evaluation of myocardial viability with BMIPP. J Nucl Med 1995; 36: 1022-1030.

    Google Scholar 

  4. Visser FC, editor. First Workshop on Radiolabelled Free Fatty Acids, Free University Hospital, Amsterdam, The Netherlands, July 6, 1984; Eur Heart J 1985; 6: 1-106.

  5. Visser FC, editor. Second Workshop on Radiolabelled Free Fatty Acids, Free University Hospital, Amsterdam, The Netherlands, November 26, 1987; Eur-Amer Commun Nucl Med 1990; 21: 201-266.

  6. Yonekura Y, editor. Third International Workshop on Radioiodinated Free Fatty Acids, Kyoto International Community House, Kyoto, Japan, February 10–11, 1993; Ann Nucl Med 1993; 7: S-II-1-116.

  7. Machulla H-J, Marsmann M, Dutschka KP, et al. Biochemical concept and synthesis of a radioiodinated phenyl fatty acid for in vivo metabolic studies of the myocardium. Eur J Nucl Med 1980; 5: 171-173.

    Google Scholar 

  8. Machulla H-J, Marsmann M, Dutschka, et al. Radiopharmaceuticals. I. Synthesis of radioiodinated fatty acids for studying myocardial metabolism. J Radioanalyt Chem 1980; 56: 253-261.

    Google Scholar 

  9. Sloof GW, Visser FC, van Eenige MJ, et al. Comparison of uptake, oxidation and lipid distribution of 17-IHA, p-IPPA and DMIPPA in normal canine myocardium. J Nucl Med 1993; 34: 649-657.

    Google Scholar 

  10. Van Eenige MJ, Visser FC, Duwel CMB, et al. Comparison of 17-I-131 heptadecanoic acid kinetics from externally measured time-activity curves and from serial myocardial biopsies in an open-chest canine model. J Nucl Med 1988; 29: 1934-1942.

    Google Scholar 

  11. Kropp J, Koehler U, Lilungu, et al. Detection of coronary artery disease with the fatty acid [123I]-IPPA as a tracer of oxidative metabolism. Circulation 1992; 86Suppl 1: 1-797.

    Google Scholar 

  12. Kropp J, Koehler U, Fehske W, et al. Semiquantification of 15-(p-[I-123]iodophenyl)petadecanoic acid in the detection of coronary artery disease. Ann Nucl Med 1993; 7: SII-67.

    Google Scholar 

  13. Goodman MM, Kirsch G, Knapp FF Jr. Synthesis and evaluation of radioiodinated terminal p-iododphenyl-substituted α and β-methyl-branched fatty acids. J Med Chem 1984; 27: 390-397.

    Google Scholar 

  14. Knapp JR FF, Goodman MM, Ambrose KR, et al. The development of radioiodinated 3-methyl-branched fatty acids for evaluation of myocardial disease by single photon tomography. In: van der Wall EE, editor. Noninvasive measurement of cardiac metabolism. Martinus Nijhoff Publishers, 1987: 159-202.

  15. Knapp FF Jr, Ambrose KR, Callahan AP. Tellurium-123m-labeled isosteres of palmitoleic and oleic acid show high myocardial uptake. In: Proceedings, Second International Symposium on Radiopharmaceuticals, Seattle, WA, March 19–23, 1979; Society of Nuclear Medicine, pp 101-108 (1979).

  16. Knapp FF Jr, Ambrose KR, Callahan AP, et al. Effects of chain length and Te-position on the myocardial uptake of Te-123m-labeled fatty acids. J Nucl Med 1981; 22: 988-993.

    Google Scholar 

  17. Elmaleh DR, Knapp FF Jr, Yasuda T, et al. Myocardial imaging with Te-123m-telluraheptadecanoic acid. J Nucl Med 1981; 22: 994-999.

    Google Scholar 

  18. Okada RD, Knapp FF Jr, Elmaleh DR, et al. Tellurium-123m-labeled 9-telluraheptadecanoic acid: a new potential cardiac imaging agent. Circulation 1982; 65: 305-310.

    Google Scholar 

  19. Knapp FF Jr, Goodman, MM, Callahan AP, et al. New myocardial imaging agents: Stabilization of radioiodine as a terminal vinyl iodide moiety on tellurium fatty acids. J Med Chem 1983; 26: 1293-1300.

    Google Scholar 

  20. Strauss HW, Elmaleh DR, Knapp FF Jr, et al. Relationship of modified fatty acid uptake into the myocardium and heteratom position in the molecule. Circulation 1982; 66: PII-109 (Abstract).

    Google Scholar 

  21. Goodman MM, Knapp FF Jr, Callahan AP, et al. A new, well-retained myocardial imaging agent: Radioiodinated 15-(p-iodophenyl)-6-telluraheptadecanoic acid. J Nucl Med 1982; 23: 904-908.

    Google Scholar 

  22. Goodman MM, Knapp FF Jr, Callahan AP, et al. Synthesis and biological evaluation of 17-[131I]iodo-9-telluraheptadecanoic acid-a potential myocardial imaging agent. J Med Chem 1982; 25: 613-618.

    Google Scholar 

  23. Goodman MM, Knapp FF Jr, Callahan AP, et al. Radioiodinated 15-(p-iodophenyl)-6-telluraheptadecanoic acid: A new myocardial imaging agent exhibiting prolonged myocardial retention. J Nucl Med 1982; 23: 903-908.

    Google Scholar 

  24. Bianco JA, Alpert JS, Paper LA, et al. Accumulation of radioiodinated 15-(p-iodophenyl)-6-tellurapentadecanoic acid in necrotic and ischemic myocardium during acute coronary occlusion and reperfusion. J Amer Coll Card 1984; 4: 80-87.

    Google Scholar 

  25. Knapp FF Jr, Srivastava PC, Callahan AP, et al. The effect of tellurium position on the myocardial specificity of radioiodinated 18-iodo-tellura-17-octadecanoic acid analogues. J Med Chem 1984; 27: 57-62.

    Google Scholar 

  26. Steinberg D, Herndon JH, Uhlendorf BW, et al. Refsum's disease: Nature of the enzyme defect. Science 1967; 156: 1740-1742.

    Google Scholar 

  27. Bergström S, Bergström B, Tryding N, et al. Intestinal absorption of and metabolism of 2,2-dimethylstearic acid in the rat. Biochem J 1954; 58: 604-608.

    Google Scholar 

  28. Avigan J, Steinberg D, Gutman A, et al. Alpha decarboxylation, an important pathway for degradation of phytanic acid in animals. Biochem Biophys Res Commun 1966; 24: 838-844.

    Google Scholar 

  29. Hull FE, Waugh RA, Malone M, et al. Synthesis of ordinary and β-hydroxy fatty acids by heart mitochondria. Arch Biochem Biophys 1972; 149: 69-90.

    Google Scholar 

  30. Yonekura Y, Brill AB, Som P, et al. Regional myocardial substrate uptake in hypertensive rats: a quantitative autoradiographic measurement. Science 1985; 227: 1494-1496.

    Google Scholar 

  31. Yamamoto K, Som P, Brill B, et al. Dual tracer autoradiographic study of β-methyl-(1-14C)heptadecanoic acid and 15-p-(131I)iodophenyl-β-methylpentadecanoic acid in normotensive and hypertensive rats. J Nucl Med 1986; 27: 1178-1183.

    Google Scholar 

  32. Knapp FF Jr, Kropp J, Goodman MM, et al. The development of iodine-123-methyl-branched fatty acids and their applications in nuclear cardiology. Ann Nucl Med 1993; 7: 1-14.

    Google Scholar 

  33. Livne E, Elmaleh DR, Barlai-Kovach MM, et al. Radioiodinated beta-methyl phenyl fatty acids as potential tracers for myocardial imaging and metabolism, Eur Heart J 1985; 6: 85-90.

    Google Scholar 

  34. Dudzack R, Schmoliner R, Angelberger P, et al. Structurally-modified fatty acids-clinical potential as tracers of metabolism, Eur J Nucl Med 1986; 12: S45-48.

    Google Scholar 

  35. Kropp JH, Eisenhut M, Lehmann WD, et al. Pharmacokinetics and metabolism of the methyl-branched fatty acid (BMIPP) in animals and man. J Nucl Med (submitted).

  36. Knapp FF Jr, Goodman MM, Kirsch G. Iodine-123-labeled 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid (DMIPP): a useful new agent to evaluate myocardial fatty acid uptake. J Nucl Med 1986; 27: 521-531.

    Google Scholar 

  37. Yamamichi Y, Kusuoka H, Morishita K, et al. Metabolism of iodine-123-BMIPP in perfused rat hearts. J Nucl Med 1995; 36: 1043-50.

    Google Scholar 

  38. Hosokawa R, Nohara R, Okuda K, et al. Cardiac metabolism of I-123-β-methyl-p-iodophenylpentadecanoic acid (I-123-BMIPP) in normal dogs and those pre-treated with carnitine palmitoyltransferase I inhibitor (Etomoxir): Contribution of α-and β-oxidation. J Nucl Med 1995; 36:137p (Abstract).

  39. Knapp FF Jr, Reske SN, Kirsch G, et al. Radioiodinated methyl-branched fatty acids-evaluation of catabolites formed in vivo. NucCompact 1990; 21: 229-231.

    Google Scholar 

  40. Knapp FF Jr, Kohlen S, Kolkmeier J, et al. Formation of metabolites from methyl-branched fatty acids by isolated Langendor. rat heart system. In: Proceedings, European Nuclear Medicine Congress 1987, Budapest, Hungary, August 24–28, 1997; Schattauer Verlag, Stuttgart, pp 596-599, 1988.

    Google Scholar 

  41. Kropp J, Eisenhut M, Lehmann WD, et al. Metabolism of the fatty acid BMIPP. J Nucl Med 1998; 39: 47p.

  42. Kropp J, Ambrose KR, Knapp FF Jr, et al. Incorporation of radioiodinated IPPA and BMIPP fatty acid analogues into complex lipids from isolated rat hearts. Nucl Med Biol 1992; 19: 283-288.

    Google Scholar 

  43. Ambrose KR, Owen BA, Goodman MM, et al. Evaluation of the metabolism in rat hearts of two new radioiodinated 3-methyl-branched fatty acid myocardial imaging agents. Eur J Nucl Med 1987; 12: 486-491.

    Google Scholar 

  44. Ambrose KR, Owen BA, Callahan AP, et al. Effects of fasting on the myocardial subcellular and lipid distribution of terminal p-iodophenyl-substituted fatty acids in rats. J Nucl Med Biol 1988; 15: 695-700.

    Google Scholar 

  45. Sloof GW, Visser FC, Teerlink T, et al. Incorporation of radioiodinated fatty acids into cardiac phospholipids of normoxic myocardium. Mol Cell Biochem 1992; 116: 79-87.

    Google Scholar 

  46. Fujibayashi Y, Yonekura Y, Takemura Y, et al. Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP), in relation to ATP concentration. J Nucl Med 1990; 31: 1818-1822.

    Google Scholar 

  47. Lin Q, Luo H, Mokler FT, et al. Effects of configuration on the myocardial uptake of radioiodinated 3(R)-BMIPP and 3(S)-BMIPP in rats. J Nucl Med 1997; 38: 1434-1440.

    Google Scholar 

  48. Knapp FF Jr, Lin Q, Luo H, et al. Preparation and evaluation of 3-methyl isomers of 15-(p-iodophenyl)-3-methylpentadecanoic acid (BMIPP): 3(R)-BMIPP shows greater heart uptake than 3(S)-BMIPP in rats. J Nucl Med 1996; 37: P6 (Abstract).

    Google Scholar 

  49. Mokler FT, Lin Q, Luo H, et al. Dual-label studies with [I-125]-3R/[I-131]-3S-BMIPP demonstrate similar metabolism in rat tissues. J Nucl Med (submitted).

  50. Knapp FF Jr, Kropp J, Franken PR. Radioiodinated BMIPP for myocardial imaging-current status and future perspectives. Nuklearmedizin 1998; 37: S8-11

    Google Scholar 

  51. Knapp FF Jr, Mokler FT, Lin Q, et al. Higher heart uptake of 3(R)-BMIPP in rats but similar lipid pool distribution suggests differences in isomae membrane transport. J Nucl Cardiol 1997; 4: S-118 (Abstract).

    Google Scholar 

  52. Mokler FT, Lin Q, Luo H, et al. Dual-label study with [I-125]-3(R)-BIMPP and [I-131]-3(S)-BMIPP demonstrates similar metabolism of the two isomers in rat tissues. Eur J Nucl Med 1996; 23: 1139 (Abstract).

    Google Scholar 

  53. Cavalier V, Franken PR, Knapp FF Jr, et al. Intra-individual comparison of the 3(R)-BMIPP and 3(S)-BMIPP Isomers in humans. J Nucl Med 1998; 39: 1672-1675.

    Google Scholar 

  54. Cavalier V, Franken PR, Knapp FF Jr, et al. Intra-individual comparison of the 3(R)-BMIPP and 3 (S)-BMIPP Isomers in humans. J Nucl Cardiol 1997; 4 Suppl: S113 (Abstract).

    Google Scholar 

  55. Franken PR, De Geeter F, Dendale P, et al. Abnormal free fatty acid uptake in subacute myocardial infraction after coronary thrombolysis: correlation with wall motion and inotropic reserve. J Nucl Med 1994; 35: 1758-1765.

    Google Scholar 

  56. DeGeeter FF, Franken P, Knapp FF Jr, et al. Relationship between blood flow and fatty acid metabolism in subacute myocardial infarction: a study by means of Tc-99m-Sestamibi and iodine-123-beta-methyl iodophenylpentadecanoic acid. Eur J Nucl Med 1994l; 21: 283-291.

    Google Scholar 

  57. Kropp J, Köhler U, Knapp FF Jr, et al. 15-(p-[I-123]iodophenyl)-3-R,S-methylpentadecanoic acid to evaluate ischemia in patients with coronary artery disease. Eur J Nucl Med 1991; 18: 650.

    Google Scholar 

  58. Kropp J, Jörgens M, Glaenzer K, et al. Evaluation of ischemia and myocardial viability in patients with coronary artery disease (CAD) with iodine-123 labeled (15-(p-iodo-phenyl)-3-R,S-methylpentadecanoic acid (BMIPP). Ann Nucl Med 1993; 7: 93-100.

    Google Scholar 

  59. Diede HE, Rodilla-Sala E, Gunawan J, et al. Identification and characterization of a moncloncal antibody to the membrane fatty acid binding protein. Biochim Biophys Acta 1992; 1125: 13-20.

    Google Scholar 

  60. Tanaka T, Sohmiya K, Kawamura K. Is CD36 deficiency an etiology of hereditary cardiomyopathy? J Mol Cell Cardiol 1997; 29: 121-127.

    Google Scholar 

  61. Fukuchi K, Nozaki S, Yosizumi T, et al. Enhanced myocardial glucose uptake in individuals with a deficiency in long-chain fatty acid transporter (CD36 deficiency). J Nucl Med 1998; 39: 152P (Abstract).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapp, F.(., Kropp, J. BMIPP-design and development. Int J Cardiovasc Imaging 15, 1–9 (1999). https://doi.org/10.1023/A:1006147228352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006147228352

Navigation